Asynchronous distributed alternating direction method of multipliers: Algorithm and convergence analysis

Alternating direction method of multipliers (ADMM) has been recognized as an efficient approach for solving many large-scale learning problems over a computer cluster. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4781 - 4785
Main Authors Chang, Tsung-Hui, Hong, Mingyi, Liao, Wei-Cheng, Wang, Xiangfeng
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.03.2016
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP.2016.7472585

Cover

Abstract Alternating direction method of multipliers (ADMM) has been recognized as an efficient approach for solving many large-scale learning problems over a computer cluster. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by the slowest workers. In this paper, we propose an asynchronous distributed ADMM (AD- ADMM) which can effectively improve the time efficiency of distributed optimization. Our main interest lies in characterizing the convergence conditions of the AD-ADMM, under the popular partially asynchronous model which is defined based on a maximum tolerable delay in the network. Specifically, by considering general and possibly non-convex cost functions, we show that the AD-ADMM converges to the set of Karush-Kuhn-Tucker (KKT) points as long as the algorithm parameters are chosen appropriately according to the network delay. We also show that the asynchrony of ADMM has to be handled with care, as a slightly different implementation can significantly jeopardize the algorithm convergence.
AbstractList Alternating direction method of multipliers (ADMM) has been recognized as an efficient approach for solving many large-scale learning problems over a computer cluster. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by the slowest workers. In this paper, we propose an asynchronous distributed ADMM (AD- ADMM) which can effectively improve the time efficiency of distributed optimization. Our main interest lies in characterizing the convergence conditions of the AD-ADMM, under the popular partially asynchronous model which is defined based on a maximum tolerable delay in the network. Specifically, by considering general and possibly non-convex cost functions, we show that the AD-ADMM converges to the set of Karush-Kuhn-Tucker (KKT) points as long as the algorithm parameters are chosen appropriately according to the network delay. We also show that the asynchrony of ADMM has to be handled with care, as a slightly different implementation can significantly jeopardize the algorithm convergence.
Author Wei-Cheng Liao
Xiangfeng Wang
Tsung-Hui Chang
Mingyi Hong
Author_xml – sequence: 1
  givenname: Tsung-Hui
  surname: Chang
  fullname: Chang, Tsung-Hui
– sequence: 2
  givenname: Mingyi
  surname: Hong
  fullname: Hong, Mingyi
– sequence: 3
  givenname: Wei-Cheng
  surname: Liao
  fullname: Liao, Wei-Cheng
– sequence: 4
  givenname: Xiangfeng
  surname: Wang
  fullname: Wang, Xiangfeng
BookMark eNotkE9LAzEQxaMo2FY_QS85emlNsskm8VaK_6CgUAVvS5qd7UZ2k5pkhX57V-xcHvP4Mcx7U3ThgweE5pQsKSX67mW92m7flozQcim5ZEKJMzSlXOpxlKLnaMIKqRdUk88rNE3pixCiJFcT1K7S0ds2Bh-GhGuXcnS7IUONTZchepOd349-BJtd8LiH3IYahwb3Q5fdoXMQ0z1edfsQXW57bHyNbfA_EPfgLYy76Y7JpWt02Zguwc1JZ-jj8eF9_bzYvD6N_28WjhGVF1QWWjMtGlPYkrBm9xeK27rUYBXT3ErOS2GlUEYzKQVXgkJZ6obYZqc5LWbo9v_uIYbvAVKuepcsdJ3xMEasqGKC67G1ckTn_6gDgOoQXW_isToVWPwCkcRokg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SP
8FD
L7M
DOI 10.1109/ICASSP.2016.7472585
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479999881
9781479999880
EISSN 2379-190X
EndPage 4785
ExternalDocumentID 7472585
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SP
8FD
L7M
ID FETCH-LOGICAL-i208t-17399295fa3c602fb20164cd69ec8294c74465c758a927754851e669f0cfb9413
IEDL.DBID RIE
IngestDate Fri Jul 11 16:44:46 EDT 2025
Wed Aug 27 02:08:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-17399295fa3c602fb20164cd69ec8294c74465c758a927754851e669f0cfb9413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1825491096
PQPubID 23500
PageCount 5
ParticipantIDs ieee_primary_7472585
proquest_miscellaneous_1825491096
PublicationCentury 2000
PublicationDate 20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 20160301
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.0265183
Snippet Alternating direction method of multipliers (ADMM) has been recognized as an efficient approach for solving many large-scale learning problems over a computer...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 4781
SubjectTerms Algorithm design and analysis
Algorithms
alternating direction method of multipliers
asynchronous algorithm
Conferences
Convergence
Delay
Delays
Distributed optimization
Electronic mail
Mathematical models
Multipliers
Networks
Optimization
Protocols
Title Asynchronous distributed alternating direction method of multipliers: Algorithm and convergence analysis
URI https://ieeexplore.ieee.org/document/7472585
https://www.proquest.com/docview/1825491096
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI62neDCY0OMl4LEkXZp0le4TRPTQBqaNCbtNqVJuk1Ai0Z3gF9PnHYDAQdu7SGSZVuxHX_-jNBVKghVmgmHUZI4vokRjvDSwImUrwMRMEkoDCcPH8LBxL-fBtMaut7OwmitLfhMu_Bpe_kql2t4KuuY1Jea9LaO6sbNylmt7a0bR35csQp5hHfuet3xeATQrdCtjlX7U35dujaS9PfQcCNDCSB5ctdF4sqPH_SM_xVyH7W-ZvbwaBuNDlBNZ4do9xvdYBMtum_vmQQ2XFPuYwWUubDtSitse-bwLpjNcRnkjLlwuV0a5ymuYIewNvsGd5_n-WpZLF6wyBS2sHU7wanNf8lw0kKT_u1jb-BUmxacJSVx4XgR8NPyIBVMhoSmCejNlyrkWsaU-zICXjVpagvBKXDmmTxNhyFPiUwTbuLgEWpkeaaPEVZcppGnGI-J9FnkJZGQpmhjRAhuUgPWRk3Q2ey1JNOYVepqo8uNVWbGwaFrITJttDHzbA1rbBqe_H30FO2AuCUw7Aw1itVan5tMoUgurIt8AnihwDM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSLDzDisyYeXeh2n_VGiAQUCAmQcNt02y4QddfgctBfb7u7oFEP3nYPTSYzTb-Z9ptvAG4ihomQFjMsgkPDVhhhMDNyDE_Y0mGOxTHRzcn9gduZ2A9TZ1qC200vjJQyI5_Juv7M3vJFwlf6qqyhUl-i0tst2Fa4bzt5t9bm3PU92y90hUxMG91WczQaavKWWy8WFhNUfh27GZa096G_tiKnkDzVV2lY5x8_BBr_a-YBVL-69tBwg0eHUJLxEex9ExyswLz59h5zrYerCn4ktGiunnclBcpezfXNYDxDOcypgKF8vjRKIlQQD_Xg7DvUfJ4ly0U6f0EsFigjrmc9nFL95xonVZi078etjlHMWjAWBPupYXpaoZY6EbO4i0kUar_ZXLhUcp9Qm3taWY2r6oJRolXzVKYmXZdGmEchVUh4DOU4ieUJIEF55JnCoj7mtuWZoce4KtsszBhVyYFVg4r2WfCay2kEhbtqcL2OSqC2uH63YLFU3gjMrIpVMXVP_156BTudcb8X9LqDxzPY1abnNLFzKKfLlbxQeUMaXmbb5ROw_cOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Asynchronous+distributed+alternating+direction+method+of+multipliers%3A+Algorithm+and+convergence+analysis&rft.au=Tsung-Hui+Chang&rft.au=Mingyi+Hong&rft.au=Wei-Cheng+Liao&rft.au=Xiangfeng+Wang&rft.date=2016-03-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4781&rft.epage=4785&rft_id=info:doi/10.1109%2FICASSP.2016.7472585&rft.externalDocID=7472585