Multi-cue Visual Tracking Using Robust Feature-Level Fusion Based on Joint Sparse Representation

The use of multiple features for tracking has been proved as an effective approach because limitation of each feature could be compensated. Since different types of variations such as illumination, occlusion and pose may happen in a video sequence, especially long sequence videos, how to dynamically...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1194 - 1201
Main Authors Xiangyuan Lan, Ma, Andy Jinhua, Pong Chi Yuen
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
2575-7075
DOI10.1109/CVPR.2014.156

Cover

Loading…
Abstract The use of multiple features for tracking has been proved as an effective approach because limitation of each feature could be compensated. Since different types of variations such as illumination, occlusion and pose may happen in a video sequence, especially long sequence videos, how to dynamically select the appropriate features is one of the key problems in this approach. To address this issue in multi-cue visual tracking, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. As a result, robust tracking performance is obtained. Experimental results on publicly available videos show that the proposed method outperforms both existing sparse representation based and fusion-based trackers.
AbstractList The use of multiple features for tracking has been proved as an effective approach because limitation of each feature could be compensated. Since different types of variations such as illumination, occlusion and pose may happen in a video sequence, especially long sequence videos, how to dynamically select the appropriate features is one of the key problems in this approach. To address this issue in multi-cue visual tracking, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. As a result, robust tracking performance is obtained. Experimental results on publicly available videos show that the proposed method outperforms both existing sparse representation based and fusion-based trackers.
The use of multiple features for tracking has been proved as an effective approach because limitation of each feature could be compensated. Since different types of variations such as illumination, occlusion and pose may happen in a video sequence, especially long sequence videos, how to dynamically select the appropriate features is one of the key problems in this approach. To address this issue in multicue visual tracking, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. As a result, robust tracking performance is obtained. Experimental results on publicly available videos show that the proposed method outperforms both existing sparse representation based and fusion-based trackers.
Author Pong Chi Yuen
Xiangyuan Lan
Ma, Andy Jinhua
Author_xml – sequence: 1
  surname: Xiangyuan Lan
  fullname: Xiangyuan Lan
  email: xylan@comp.hkbu.edu.hk
  organization: Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
– sequence: 2
  givenname: Andy Jinhua
  surname: Ma
  fullname: Ma, Andy Jinhua
  email: jhma@comp.hkbu.edu.hk
  organization: Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
– sequence: 3
  surname: Pong Chi Yuen
  fullname: Pong Chi Yuen
  email: pcyuen@comp.hkbu.edu.hk
  organization: Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
BookMark eNpNjz1PwzAYhA0qEqV0ZGLxyJLi14kde4SK8qEiUGm7Bid-iyzSJMQ2Ev-eVmVgubvh0Z3ujAyatkFCLoBNAJi-nq5fFxPOIJuAkEdkrHMFWa61AFDimAyByTSRGvTgXz4lY-9dybjMZSZSOSTvz7EOLqki0rXz0dR02Zvq0zUfdOX3umjL6AOdoQmxx2SO31jTWfSubeit8WjpLjy1rgn0rTO9R7rArkePTTBhB52Tk42pPY7_fERWs7vl9CGZv9w_Tm_mieNMhQSYKpkFW4JWuqyEQI6IqcyVscxsBLdiA4wbMAy4VTyz-1Op0FxZm_MqHZGrQ2_Xt18RfSi2zldY16bBNvoCZJ5rEFylO_TygLrdRNH1bmv6n0JqpoXg6S_RGGYs
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.156
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
2575-7075
EndPage 1201
ExternalDocumentID 6909552
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-108b0d1db1989bc55e2eee3678ad0af52d5f102a1a012d824d106335928dd72c3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Fri Jul 11 00:37:08 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-108b0d1db1989bc55e2eee3678ad0af52d5f102a1a012d824d106335928dd72c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677915283
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677915283
ieee_primary_6909552
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.3219197
Snippet The use of multiple features for tracking has been proved as an effective approach because limitation of each feature could be compensated. Since different...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1194
SubjectTerms Computer vision
Conferences
Feature extraction
Illumination
Joints
Occlusion
Optimization
Pattern recognition
Representations
Robustness
Target tracking
Tracking
Vectors
Visual
Visualization
Title Multi-cue Visual Tracking Using Robust Feature-Level Fusion Based on Joint Sparse Representation
URI https://ieeexplore.ieee.org/document/6909552
https://www.proquest.com/docview/1677915283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qyZPLKO5E8GjHNG3S5qo4iDgi44K3MWleYVBacZqLv96XtB1BPXgLgUKzvfV77yPkhEGmFOgyyo0sorRIIDLCY9y1sJJByXQI5oxv5dVjev0snpfI6aIWBgAC-AyGfhhy-bYunA-VnaEnp4RAgbuMjltbq9XfHS4zmYqWuztI4QQ9G6kWGQXu2VhC5lMmkVSx-u63eXbxdDfxIK90GHse68Cy8ks0B30zWiPj_k9bmMnr0DVmWHz-aOL436Wsk63vyj56t9BZG2QJqk2y1pmitHvoc5zq2R76uQF5CbW6UeGAPs3mTr9R1HOFj7TTgDugk9q4eUO9Uek-ILrxcCQ6cj4cR89RWVqKg-t6VjX0_h39aaCTAMPtqp-qLfI4uny4uIo6foZoxlneoATPDbOxNR53ZQohgOM6E1R_2jJdCm5FifaLjjVqQZvz1PrdT4TiubUZL5JtslLVFewQqoVSnKWhKWmacWHQcshYCirPyyRnYpcM_B5O39sWHNNu-3bJcX9KU3wWPtehK6jdfBrLLFOx71yz9_en-2TVH3mL-jogK82Hg0O0LxpzFC7WF8xsyrE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQPcCJloeAPjASR7I4TuzE16KuFthFaAuIW7DjibQCJYiNL_319TjJIrUcuFmWIsWveX7fDCEnDDKlQFdRbmQZpWUCkRGIcdfCSgYV0yGYM7uWk7v08kE8rJHTFRcGAAL4DEY4DLl825QOQ2Vn3pNTQniB-0kgGbdjaw23h8tMpqLr3h3kcOJ9G6lWOQWO_VhC7lMmkVSxequ4eXZ-fzNHmFc6irGTdeiz8p9wDhpnvEVmw792QJOnkWvNqPzzTxnHjy7mM9l94_bRm5XW-kLWoN4mW70xSvunvvRTQ7-HYW6HPAa2blQ6oPeLpdPP1Gu6EmPtNCAP6LwxbtlSNCvdK0RTBCTRscOAHP3p1aWlfnDZLOqW_n7xHjXQeQDi9vynepfcjX_dnk-ivkNDtOAsb70Mzw2zsTWIvDKlEMD9OhOvALVluhLcispbMDrWXg_anKcWdz8RiufWZrxM9sh63dSwT6gWSnGWhrKkacaF8bZDxlJQeV4lORMHZAf3sHjpinAU_fYdkOPhlAr_MDDboWto3LKIZZapGGvXHL7_6RHZmNzOpsX04vrqK9nE4-8wYN_Ievvq4Lu3NlrzI1yyv4w0zfk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-cue+Visual+Tracking+Using+Robust+Feature-Level+Fusion+Based+on+Joint+Sparse+Representation&rft.au=Xiangyuan+Lan&rft.au=Ma%2C+Andy+Jinhua&rft.au=Pong+Chi+Yuen&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1194&rft.epage=1201&rft_id=info:doi/10.1109%2FCVPR.2014.156&rft.externalDocID=6909552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon