Classifying cognitive states from fMRI data using neural networks
Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given it...
Saved in:
Published in | 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) Vol. 4; pp. 2871 - 2875 vol.4 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
Piscataway NJ
IEEE
2004
|
Subjects | |
Online Access | Get full text |
ISBN | 0780383591 9780780383593 |
ISSN | 1098-7576 |
DOI | 10.1109/IJCNN.2004.1381114 |
Cover
Loading…
Abstract | Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given its fMRI activity. We present a new approach for creating single-subject classifiers using bagging from a pool of feed-forward backpropagation networks. Our experiments indicate that as the number of selected features (voxels) increases, the accuracy of the system increases too. Nevertheless, when the number of voxels exceeds 120, the accuracy of the system rapidly increases from 45% to 70%. Eventually it reaches a (near) saturation point after which the increase in the accuracy is very slow. |
---|---|
AbstractList | Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given its fMRI activity. We present a new approach for creating single-subject classifiers using bagging from a pool of feed-forward backpropagation networks. Our experiments indicate that as the number of selected features (voxels) increases, the accuracy of the system increases too. Nevertheless, when the number of voxels exceeds 120, the accuracy of the system rapidly increases from 45% to 70%. Eventually it reaches a (near) saturation point after which the increase in the accuracy is very slow. |
Author | Ghorbani, A.A. Onut, I.-V. |
Author_xml | – sequence: 1 givenname: I.-V. surname: Onut fullname: Onut, I.-V. organization: Fac. of Comput. Sci., New Brunswick Univ., Fredericton, NB, Canada – sequence: 2 givenname: A.A. surname: Ghorbani fullname: Ghorbani, A.A. organization: Fac. of Comput. Sci., New Brunswick Univ., Fredericton, NB, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17623914$$DView record in Pascal Francis |
BookMark | eNpFkE9Lw0AUxBesYFv7BfSSi8fEt7svm82xBP9UagXRc3mb7JbVNCnZVOm3NxLBucxhfgzDzNikaRvL2BWHhHPIb1dPxWaTCABMuNScczxjM8g0SC3TnE_YdKB0nKWZumCLED5gEKbIJU7ZsqgpBO9OvtlFZbtrfO-_bBR66m2IXNfuI_f8uooq6ik6hl-qsceO6sH677b7DJfs3FEd7OLP5-z9_u6teIzXLw-rYrmOvYC0j53GKiPJM1OiQ2NIaqgEaiCFuQaFhMN245RNTekgBymUwByQhBGmUnLObsbeA4WSatdRU_qwPXR-T91pyzMlZM5x4K5Hzltr_-PxGfkDUaFYOQ |
ContentType | Conference Proceeding |
Copyright | 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 INIST-CNRS |
DBID | 6IE 6IH CBEJK RIE RIO IQODW |
DOI | 10.1109/IJCNN.2004.1381114 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Pascal-Francis |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science Applied Sciences |
EndPage | 2875 vol.4 |
ExternalDocumentID | 17623914 1381114 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IH CBEJK RIE RIO 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ IQODW OCL RIL |
ID | FETCH-LOGICAL-i205t-f84d7a317bc4f4bba380d2480a6498064a4811bf6e5bcf09032624904a2b2bd63 |
IEDL.DBID | RIE |
ISBN | 0780383591 9780780383593 |
ISSN | 1098-7576 |
IngestDate | Sun Oct 22 16:06:37 EDT 2023 Tue Aug 26 18:27:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Human Backpropagation Brain Central nervous system Functional analysis Neural network Nuclear magnetic resonance imaging Encephalon Aggregate model Information use Cognitive theory Backpropagation algorithm Human activity Voxel Classification Medical imagery Tridimensional image Feedforward Data gathering |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | 2004 International Joint Conference on Neural Networks (proceedings) |
MergedId | FETCHMERGED-LOGICAL-i205t-f84d7a317bc4f4bba380d2480a6498064a4811bf6e5bcf09032624904a2b2bd63 |
ParticipantIDs | ieee_primary_1381114 pascalfrancis_primary_17623914 |
PublicationCentury | 2000 |
PublicationDate | 20040000 2004 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – year: 2004 text: 20040000 |
PublicationDecade | 2000 |
PublicationPlace | Piscataway NJ |
PublicationPlace_xml | – name: Piscataway NJ |
PublicationTitle | 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) |
PublicationTitleAbbrev | IJCNN |
PublicationYear | 2004 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000454134 ssj0060749 ssj0020275 |
Score | 1.3448658 |
Snippet | Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities... |
SourceID | pascalfrancis ieee |
SourceType | Index Database Publisher |
StartPage | 2871 |
SubjectTerms | Applied sciences Artificial intelligence Biological neural networks Computer science Computer science; control theory; systems Data mining Electronic mail Exact sciences and technology Humans Magnetic resonance imaging Neural networks Niobium Pattern recognition. Digital image processing. Computational geometry Support vector machine classification Support vector machines |
Title | Classifying cognitive states from fMRI data using neural networks |
URI | https://ieeexplore.ieee.org/document/1381114 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5QwIg_SA_Gkxv70W7rkRAJkECMkYQbabvWEBWMjIP-9bbdD9B48LQty7K0W_re9_p93wO4YdwozgPupIwoB2PCHO6FzMEiIhRTIQizbp-zaDTHkwVZ1OCu0sJIKS35TLrm1O7lpxuxM6Wynq_Di2-6Vh9p4JZrtap6irGS843VWQG2vAP33UjHSWq3PY15ps6wLX5PPI3OCPULG57yOiylNR7tjSeD2cyCSLd4d9GExVAo2VbPosrbXxzEpGEDpuVocirKi7vLuCu-fhk9_ne4J9Deq__QQxXXTqEm101o9dcanr99oltkSaO2Gt-ERtkVAhWLRAv6ts_myuqnUMVOQla5tEVGzoLU9HGMDDcVGdr9MzKmmuxVHywlfduG-fD-aTByikYNzirwSOaoBKcx05kIF1hhzlmYeGmAE49FmCY66WFYj4SrSBIulKkMBZGGfR5mAQ94GoVnUF9v1vIcENUAUPpJrAIeY-GLhPKYqjQUlAiOGetAy0zU8j334lgWc9SB7o_vsb-vF_uQ-vji7-cu4Tin4piayhXUs4-dvNZZRsa79vf6Bjt_yIA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATChjxB_ZgPDnYj3asR0IkgLAYAwk30natISoYgYP-9bbdBmg8eNqWZVnaLX3ve_2-7wHcMG4U5z53EkaUgzFhDncD5mAREoqpEIRZt8847E3wYEqmBbjbamGklJZ8Jhvm1O7lJ0uxMaWypqfDi2e6Vh8QI8ZN1Vrbiooxk_OM2VkGt9w9_91QR0pqNz6NfabOsS2Cj1yNzwj1MiOe_DrIxTUubfYHnTi2MLKRvT1rw2JIlGyl51GlDTD2olK3BKN8PCkZ5aWxWfOG-Ppl9fjfAR9Ddaf_Q4_byHYCBbkoQ6W90AD97RPdIksbtfX4MpTyvhAoWyYq0LadNudWQYW2_CRktUsrZAQtSI2e-siwU5Eh3j8jY6vJXvXBktJXVZh078ednpO1anDmvkvWjopw0mI6F-ECK8w5CyI38XHkshDTSKc9DOuRcBVKwoUytSE_1MDPxcznPk_C4BSKi-VCngGiGgJKL2opn7ew8EREeYuqJBCUCI4Zq0HFTNTsPXXjmGVzVIP6j--xu6-X-4B6-Pzv567hsDceDWfDfvxwAUcpMcdUWC6huP7YyCudc6x53f5q3-N8y8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2004+IEEE+International+Joint+Conference+on+Neural+Networks+%28IEEE+Cat.+No.04CH37541%29&rft.atitle=Classifying+cognitive+states+from+fMRI+data+using+neural+networks&rft.au=Onut%2C+I.-V.&rft.au=Ghorbani%2C+A.A.&rft.date=2004-01-01&rft.pub=IEEE&rft.isbn=9780780383593&rft.issn=1098-7576&rft.volume=4&rft.spage=2871&rft.epage=2875+vol.4&rft_id=info:doi/10.1109%2FIJCNN.2004.1381114&rft.externalDocID=1381114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-7576&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-7576&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-7576&client=summon |