Classifying cognitive states from fMRI data using neural networks

Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given it...

Full description

Saved in:
Bibliographic Details
Published in2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) Vol. 4; pp. 2871 - 2875 vol.4
Main Authors Onut, I.-V., Ghorbani, A.A.
Format Conference Proceeding
LanguageEnglish
Published Piscataway NJ IEEE 2004
Subjects
Online AccessGet full text
ISBN0780383591
9780780383593
ISSN1098-7576
DOI10.1109/IJCNN.2004.1381114

Cover

Loading…
Abstract Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given its fMRI activity. We present a new approach for creating single-subject classifiers using bagging from a pool of feed-forward backpropagation networks. Our experiments indicate that as the number of selected features (voxels) increases, the accuracy of the system increases too. Nevertheless, when the number of voxels exceeds 120, the accuracy of the system rapidly increases from 45% to 70%. Eventually it reaches a (near) saturation point after which the increase in the accuracy is very slow.
AbstractList Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities of data about activity of the human brain. Our aim is to use this information in order to predict the cognitive status of the subject given its fMRI activity. We present a new approach for creating single-subject classifiers using bagging from a pool of feed-forward backpropagation networks. Our experiments indicate that as the number of selected features (voxels) increases, the accuracy of the system increases too. Nevertheless, when the number of voxels exceeds 120, the accuracy of the system rapidly increases from 45% to 70%. Eventually it reaches a (near) saturation point after which the increase in the accuracy is very slow.
Author Ghorbani, A.A.
Onut, I.-V.
Author_xml – sequence: 1
  givenname: I.-V.
  surname: Onut
  fullname: Onut, I.-V.
  organization: Fac. of Comput. Sci., New Brunswick Univ., Fredericton, NB, Canada
– sequence: 2
  givenname: A.A.
  surname: Ghorbani
  fullname: Ghorbani, A.A.
  organization: Fac. of Comput. Sci., New Brunswick Univ., Fredericton, NB, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17623914$$DView record in Pascal Francis
BookMark eNpFkE9Lw0AUxBesYFv7BfSSi8fEt7svm82xBP9UagXRc3mb7JbVNCnZVOm3NxLBucxhfgzDzNikaRvL2BWHhHPIb1dPxWaTCABMuNScczxjM8g0SC3TnE_YdKB0nKWZumCLED5gEKbIJU7ZsqgpBO9OvtlFZbtrfO-_bBR66m2IXNfuI_f8uooq6ik6hl-qsceO6sH677b7DJfs3FEd7OLP5-z9_u6teIzXLw-rYrmOvYC0j53GKiPJM1OiQ2NIaqgEaiCFuQaFhMN245RNTekgBymUwByQhBGmUnLObsbeA4WSatdRU_qwPXR-T91pyzMlZM5x4K5Hzltr_-PxGfkDUaFYOQ
ContentType Conference Proceeding
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID 6IE
6IH
CBEJK
RIE
RIO
IQODW
DOI 10.1109/IJCNN.2004.1381114
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Pascal-Francis
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
Applied Sciences
EndPage 2875 vol.4
ExternalDocumentID 17623914
1381114
Genre orig-research
GroupedDBID 29I
6IE
6IH
CBEJK
RIE
RIO
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
IQODW
OCL
RIL
ID FETCH-LOGICAL-i205t-f84d7a317bc4f4bba380d2480a6498064a4811bf6e5bcf09032624904a2b2bd63
IEDL.DBID RIE
ISBN 0780383591
9780780383593
ISSN 1098-7576
IngestDate Sun Oct 22 16:06:37 EDT 2023
Tue Aug 26 18:27:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Human
Backpropagation
Brain
Central nervous system
Functional analysis
Neural network
Nuclear magnetic resonance imaging
Encephalon
Aggregate model
Information use
Cognitive theory
Backpropagation algorithm
Human activity
Voxel
Classification
Medical imagery
Tridimensional image
Feedforward
Data gathering
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName 2004 International Joint Conference on Neural Networks (proceedings)
MergedId FETCHMERGED-LOGICAL-i205t-f84d7a317bc4f4bba380d2480a6498064a4811bf6e5bcf09032624904a2b2bd63
ParticipantIDs ieee_primary_1381114
pascalfrancis_primary_17623914
PublicationCentury 2000
PublicationDate 20040000
2004
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 20040000
PublicationDecade 2000
PublicationPlace Piscataway NJ
PublicationPlace_xml – name: Piscataway NJ
PublicationTitle 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541)
PublicationTitleAbbrev IJCNN
PublicationYear 2004
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454134
ssj0060749
ssj0020275
Score 1.3448658
Snippet Since the discovery of functional magnetic resonance imaging (fMRI) studies have proved that this technique is one of the best for collecting vast quantities...
SourceID pascalfrancis
ieee
SourceType Index Database
Publisher
StartPage 2871
SubjectTerms Applied sciences
Artificial intelligence
Biological neural networks
Computer science
Computer science; control theory; systems
Data mining
Electronic mail
Exact sciences and technology
Humans
Magnetic resonance imaging
Neural networks
Niobium
Pattern recognition. Digital image processing. Computational geometry
Support vector machine classification
Support vector machines
Title Classifying cognitive states from fMRI data using neural networks
URI https://ieeexplore.ieee.org/document/1381114
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5QwIg_SA_Gkxv70W7rkRAJkECMkYQbabvWEBWMjIP-9bbdD9B48LQty7K0W_re9_p93wO4YdwozgPupIwoB2PCHO6FzMEiIhRTIQizbp-zaDTHkwVZ1OCu0sJIKS35TLrm1O7lpxuxM6Wynq_Di2-6Vh9p4JZrtap6irGS843VWQG2vAP33UjHSWq3PY15ps6wLX5PPI3OCPULG57yOiylNR7tjSeD2cyCSLd4d9GExVAo2VbPosrbXxzEpGEDpuVocirKi7vLuCu-fhk9_ne4J9Deq__QQxXXTqEm101o9dcanr99oltkSaO2Gt-ERtkVAhWLRAv6ts_myuqnUMVOQla5tEVGzoLU9HGMDDcVGdr9MzKmmuxVHywlfduG-fD-aTByikYNzirwSOaoBKcx05kIF1hhzlmYeGmAE49FmCY66WFYj4SrSBIulKkMBZGGfR5mAQ94GoVnUF9v1vIcENUAUPpJrAIeY-GLhPKYqjQUlAiOGetAy0zU8j334lgWc9SB7o_vsb-vF_uQ-vji7-cu4Tin4piayhXUs4-dvNZZRsa79vf6Bjt_yIA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATChjxB_ZgPDnYj3asR0IkgLAYAwk30natISoYgYP-9bbdBmg8eNqWZVnaLX3ve_2-7wHcMG4U5z53EkaUgzFhDncD5mAREoqpEIRZt8847E3wYEqmBbjbamGklJZ8Jhvm1O7lJ0uxMaWypqfDi2e6Vh8QI8ZN1Vrbiooxk_OM2VkGt9w9_91QR0pqNz6NfabOsS2Cj1yNzwj1MiOe_DrIxTUubfYHnTi2MLKRvT1rw2JIlGyl51GlDTD2olK3BKN8PCkZ5aWxWfOG-Ppl9fjfAR9Ddaf_Q4_byHYCBbkoQ6W90AD97RPdIksbtfX4MpTyvhAoWyYq0LadNudWQYW2_CRktUsrZAQtSI2e-siwU5Eh3j8jY6vJXvXBktJXVZh078ednpO1anDmvkvWjopw0mI6F-ECK8w5CyI38XHkshDTSKc9DOuRcBVKwoUytSE_1MDPxcznPk_C4BSKi-VCngGiGgJKL2opn7ew8EREeYuqJBCUCI4Zq0HFTNTsPXXjmGVzVIP6j--xu6-X-4B6-Pzv567hsDceDWfDfvxwAUcpMcdUWC6huP7YyCudc6x53f5q3-N8y8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2004+IEEE+International+Joint+Conference+on+Neural+Networks+%28IEEE+Cat.+No.04CH37541%29&rft.atitle=Classifying+cognitive+states+from+fMRI+data+using+neural+networks&rft.au=Onut%2C+I.-V.&rft.au=Ghorbani%2C+A.A.&rft.date=2004-01-01&rft.pub=IEEE&rft.isbn=9780780383593&rft.issn=1098-7576&rft.volume=4&rft.spage=2871&rft.epage=2875+vol.4&rft_id=info:doi/10.1109%2FIJCNN.2004.1381114&rft.externalDocID=1381114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-7576&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-7576&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-7576&client=summon