Coreference-aware Double-channel Attention Network for Multi-party Dialogue Reading Comprehension

We tackle Multi-party Dialogue Reading Comprehension (abbr., MDRC). MDRC stands for an extractive reading comprehension task grounded on a batch of dialogues among multiple interlocutors. It is challenging due to the requirement of understanding cross-utterance contexts and relationships in a multi-...

Full description

Saved in:
Bibliographic Details
Published in2023 International Joint Conference on Neural Networks (IJCNN) pp. 1 - 8
Main Authors Li, Yanling, Zou, Bowei, Fan, Yifan, Dong, Mengxing, Hong, Yu
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We tackle Multi-party Dialogue Reading Comprehension (abbr., MDRC). MDRC stands for an extractive reading comprehension task grounded on a batch of dialogues among multiple interlocutors. It is challenging due to the requirement of understanding cross-utterance contexts and relationships in a multi-turn multi-party conversation. Previous studies have made great efforts on the utterance profiling of a single interlocutor and graph-based interaction modeling. The corresponding solutions contribute to the answer-oriented reasoning on a series of well-organized and thread-aware conversational contexts. However, the current MDRC models still suffer from two bottlenecks. On the one hand, a pronoun like "it" most probably produces multi-skip reasoning throughout the utterances of different interlocutors. On the other hand, an MDRC encoder is potentially puzzled by fuzzy features, i.e., the mixture of inner linguistic features in utterances and external interactive features among utterances. To overcome the bottlenecks, we propose a coreference-aware attention modeling method to strengthen the reasoning ability. In addition, we construct a two-channel encoding network. It separately encodes utterance profiles and interactive relationships, so as to relieve the confusion among heterogeneous features. We experiment on the benchmark corpora Molweni and FriendsQA. Experimental results demonstrate that our approach yields substantial improvements on both corpora, compared to the fine-tuned BERT and ELECTRA baselines. The maximum performance gain is about 2.5% F\mathbf{1}-\mathbf{score} . Besides, our MDRC models outperform the state-of-the-art in most cases.
AbstractList We tackle Multi-party Dialogue Reading Comprehension (abbr., MDRC). MDRC stands for an extractive reading comprehension task grounded on a batch of dialogues among multiple interlocutors. It is challenging due to the requirement of understanding cross-utterance contexts and relationships in a multi-turn multi-party conversation. Previous studies have made great efforts on the utterance profiling of a single interlocutor and graph-based interaction modeling. The corresponding solutions contribute to the answer-oriented reasoning on a series of well-organized and thread-aware conversational contexts. However, the current MDRC models still suffer from two bottlenecks. On the one hand, a pronoun like "it" most probably produces multi-skip reasoning throughout the utterances of different interlocutors. On the other hand, an MDRC encoder is potentially puzzled by fuzzy features, i.e., the mixture of inner linguistic features in utterances and external interactive features among utterances. To overcome the bottlenecks, we propose a coreference-aware attention modeling method to strengthen the reasoning ability. In addition, we construct a two-channel encoding network. It separately encodes utterance profiles and interactive relationships, so as to relieve the confusion among heterogeneous features. We experiment on the benchmark corpora Molweni and FriendsQA. Experimental results demonstrate that our approach yields substantial improvements on both corpora, compared to the fine-tuned BERT and ELECTRA baselines. The maximum performance gain is about 2.5% F\mathbf{1}-\mathbf{score} . Besides, our MDRC models outperform the state-of-the-art in most cases.
Author Zou, Bowei
Dong, Mengxing
Fan, Yifan
Li, Yanling
Hong, Yu
Author_xml – sequence: 1
  givenname: Yanling
  surname: Li
  fullname: Li, Yanling
  email: li4861988@gmail.com
  organization: School of Computer Science and Technology, Soochow University,Soochow,China
– sequence: 2
  givenname: Bowei
  surname: Zou
  fullname: Zou, Bowei
  email: zou_bowei@i2r.a-star.edu.sg
  organization: Institute for Infocomm Research, ASTAR,Singapore
– sequence: 3
  givenname: Yifan
  surname: Fan
  fullname: Fan, Yifan
  email: yifanfannlp@gmail.com
  organization: School of Computer Science and Technology, Soochow University,Soochow,China
– sequence: 4
  givenname: Mengxing
  surname: Dong
  fullname: Dong, Mengxing
  email: ayumudong@gmail.com
  organization: School of Computer Science and Technology, Soochow University,Soochow,China
– sequence: 5
  givenname: Yu
  surname: Hong
  fullname: Hong, Yu
  email: tianxianer@gmail.com
  organization: School of Computer Science and Technology, Soochow University,Soochow,China
BookMark eNo1kMtOwzAURA0CCVr4Axb-ARe_4sTLKuVRVIqEYF3dJNetIbUrx1XVv6cSsJrNnJHOjMhFiAEJoYJPhOD2fv5SL5eFLjSfSC7VRHBhhRb6jIyEMYWuKlPyc3IthRFMa15ekdEwfPFT11p1TaCOCR0mDC0yOEBCOov7pkfWbiAE7Ok0ZwzZx0CXmA8xfVMXE33d99mzHaR8pDMPfVzvkb4jdD6saR23u4QbDMMJuyGXDvoBb_9yTD4fHz7qZ7Z4e5rX0wXzkuvMXFF2tgGsGmlFA00nLbcKyhZF50pRIjqDJ7sKOTRFYVprhHXStbpTHRilxuTud9cj4mqX_BbScfX_h_oB2-1Zyg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN54540.2023.10191414
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665488670
9781665488679
EISSN 2161-4407
EndPage 8
ExternalDocumentID 10191414
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2020YFB1313601
  funderid: 10.13039/501100012166
– fundername: National Science Foundation of China
  grantid: 62076174,61836007
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-f57d9bae8b291babd29093a7ce1df717eef6e1018e0ab556c9619f2fc4d3da633
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:12 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-f57d9bae8b291babd29093a7ce1df717eef6e1018e0ab556c9619f2fc4d3da633
PageCount 8
ParticipantIDs ieee_primary_10191414
PublicationCentury 2000
PublicationDate 2023-June-18
PublicationDateYYYYMMDD 2023-06-18
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-18
  day: 18
PublicationDecade 2020
PublicationTitle 2023 International Joint Conference on Neural Networks (IJCNN)
PublicationTitleAbbrev IJCNN
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.8832624
Snippet We tackle Multi-party Dialogue Reading Comprehension (abbr., MDRC). MDRC stands for an extractive reading comprehension task grounded on a batch of dialogues...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Context
Coreference-aware attention
Encoding
Feature extraction
Interaction modeling
Multi-party dialogue reading comprehension
Neural networks
Oral communication
Performance gain
Utterance profiling
Title Coreference-aware Double-channel Attention Network for Multi-party Dialogue Reading Comprehension
URI https://ieeexplore.ieee.org/document/10191414
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7ak6e6VNzJwWvGWdPJUaqlFhw8WOitZHnBYpmWMkX015uXmWlREJzTMDAkZOG9l3wLIbdKSJ2lRjEtbMhS97CcK8N4jBCMVNrI68w-F3w0ScfTbNqQ1T0XBgA8-AwCfPV3-WapN3hU5nY4qpGhbfV-X4iarLWtrjDStlCdUNw9jQdFkaG-XIAO4UH77w8XFR9Ehl1StM3X2JH3YFOpQH_9Umb8d_8OSW_H16Mv20h0RPagPCbd1rCBNvv3hMjBzlaEyQ-5BuoSaLUAhvzfEhb0vqpq_CMtanw4dUkt9SxdtnKr7JM-zOvjHtrA7yk2s4Y3BMIvyx6ZDB9fByPWeCyweRymFbNZ3wglIVexiJRUJhahSGRfQ2SsK_UALAdU9YJQqizjWriKy8ZWpyYxkifJKemUyxLOCM1d9qJ0aMLYQspRApW70JeBMUmktFDnpIdDNlvVMhqzdrQu_vh-SQ5w5hCXFeVXpFOtN3DtMoBK3fiZ_waYZ7H9
link.rule.ids 310,311,783,787,792,793,799,23943,23944,25153,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SD3qqS8XdHLxmnDWdHKVa2toOHlrorWR5g8UyLWWK6K83b5YWBcE5hYFhQhbee8m3EHKvhNRRaBTTInVZaB8Wc2UY9xGCEcrUK3RmRwnvTcLBNJpWZPWCCwMABfgMHGwWd_lmqTd4VGZ3OKqRoW31vk2s43ZJ19rWVxhra7COKx76g06SRKgw56BHuFN__cNHpQgj3SZJ6g6U6JF3Z5MrR3_90mb8dw-PSGvH2KOv21h0TPYgOyHN2rKBVjv4lMjOzliEyQ-5BmpTaLUAhgzgDBb0Mc9LBCRNSoQ4tWktLXi6bGXX2Sd9mpcHPrQC4FP8zRreEAq_zFpk0n0ed3qscllgc98Nc5ZGbSOUhFj5wlNSGV-4IpBtDZ5JbbEHkHJAXS9wpYoiroWtuVI_1aEJjORBcEYa2TKDc0Jjm78o7RrXTyHkKILKbfCLwJjAU1qoC9LCIZutSiGNWT1al3-8vyMHvfFoOBv2k5crcoiziCgtL74mjXy9gRubD-TqtlgF3xOrtUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2023+International+Joint+Conference+on+Neural+Networks+%28IJCNN%29&rft.atitle=Coreference-aware+Double-channel+Attention+Network+for+Multi-party+Dialogue+Reading+Comprehension&rft.au=Li%2C+Yanling&rft.au=Zou%2C+Bowei&rft.au=Fan%2C+Yifan&rft.au=Dong%2C+Mengxing&rft.date=2023-06-18&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FIJCNN54540.2023.10191414&rft.externalDocID=10191414