DCFace: Synthetic Face Generation with Dual Condition Diffusion Model
Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 12715 - 12725 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code Link |
---|---|
AbstractList | Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code Link |
Author | Liu, Xiaoming Jain, Anil Liu, Feng Kim, Minchul |
Author_xml | – sequence: 1 givenname: Minchul surname: Kim fullname: Kim, Minchul email: kimminc2@msu.edu organization: Michigan State University,East Lansing,MI,48824 – sequence: 2 givenname: Feng surname: Liu fullname: Liu, Feng email: liufeng6@msu.edu organization: Michigan State University,East Lansing,MI,48824 – sequence: 3 givenname: Anil surname: Jain fullname: Jain, Anil email: jain@msu.edu organization: Michigan State University,East Lansing,MI,48824 – sequence: 4 givenname: Xiaoming surname: Liu fullname: Liu, Xiaoming email: liuxm@msu.edu organization: Michigan State University,East Lansing,MI,48824 |
BookMark | eNotjMtOwzAQRQ0CiVL6B134B1LGntjxsENJW5CKQLy2lRtPVKOQoCQV6t_TAqt7z1mcS3HWtA0LMVUwUwroOn9_ejY60zTToHEGSms8ERPKyKEBPDC5UzFSYDGxpOhCTPr-AwBQK2XJjcS8yBe-5Bv5sm-GLQ-xlEeWS26480NsG_kdh60sdr6WeduE-OuKWFW7_vge2sD1lTivfN3z5H_H4m0xf83vktXj8j6_XSVRQzokjEanwZFhAhMqZzYlQ0alrciCVT5FX6pN6twmYDh4Qp96a4w1ATN2Dsdi-teNzLz-6uKn7_ZrBYd6Zhz-AGx7TU4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52729.2023.01223 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350301298 |
EISSN | 1063-6919 |
EndPage | 12725 |
ExternalDocumentID | 10204758 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i204t-e3524d895e905df85bce079c6f96061a43ac1b488bd3d79c93a4a65565d37e883 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:56:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-e3524d895e905df85bce079c6f96061a43ac1b488bd3d79c93a4a65565d37e883 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10204758 |
PublicationCentury | 2000 |
PublicationDate | 2023-June |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.5814703 |
Snippet | Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 12715 |
SubjectTerms | Biometrics Diversity reception Face recognition Lighting Performance gain Solid modeling Three-dimensional displays Training |
Title | DCFace: Synthetic Face Generation with Dual Condition Diffusion Model |
URI | https://ieeexplore.ieee.org/document/10204758 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTpzGY4i3cuDa0i5Jl3DdQxOHaQKGdpvSxJEmpg5Be4Bfj5N2QyAhcWtzaCM7lj87_mxCbhDRKwOSRalT_YjjEYpyxVVkZeaUM5l0ELp9TrPJnN8vxKIhqwcuDACE4jOI_WO4y7cbU_lUGVp4L-EIcFukhZFbTdbaJVQYhjKZkg09Lk3U7eB59iB6iB5jPyM89pdI7McQleBDxh0y3f69Lh15iasyj83nr8aM_97eAel-0_XobOeIDskeFEek0-BL2ljv-zEZDQdjbeCOPn4UiPvwyFD_TuvW015D1Kdl6bDSa4rftqGciw5XzlU-qUb94LR1l8zHo6fBJGrGKEQr3E8ZAWIsbqUSoBJhnRS5gaSvDCoDo5dUc6ZNmqMh55ZZXFdMc50JRHqW9UFKdkLaxaaAU0K9dQNolHWOOIsJaZ0GwQFxpGYYHJ2RrhfL8rXulLHcSuT8j_ULsu9VU5deXZJ2-VbBFTr5Mr8Oyv0CWVikeQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHOA0HkO8yYFrS7skXcJ1Dw0Y0wQb2m1KE1eamDoE7QF-PU7bDYGExK3NoY3sWP7s-LMJuUJErwxI5oWJankcj5AXK648K6NEJSaSCRTdPodRf8LvpmJakdULLgwAFMVn4LvH4i7fLk3uUmVo4c2AI8DdJFvo-EVY0rXWKRWGwUykZEWQCwN13X4ePYom4kffTQn33TUS-zFGpfAivToZrv5fFo-8-HkW--bzV2vGf29wlzS-CXt0tHZFe2QD0n1SrxAmrez3_YB0O-2eNnBDnz5SRH54aKh7p2Xzaacj6hKztJPrBcVv26Kgi3bmSZK7tBp1o9MWDTLpdcftvlcNUvDmuJ_MA0RZ3EolQAXCJlLEBoKWMqgOjF9CzZk2YYymHFtmcV0xzXUkEOtZ1gIp2SGppcsUjgh19g2gUdYxIi0mpE00CA6IJDXD8OiYNJxYZq9lr4zZSiInf6xfku3--GEwG9wO70_JjlNTWYh1RmrZWw7n6PKz-KJQ9Bch1KfC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=DCFace%3A+Synthetic+Face+Generation+with+Dual+Condition+Diffusion+Model&rft.au=Kim%2C+Minchul&rft.au=Liu%2C+Feng&rft.au=Jain%2C+Anil&rft.au=Liu%2C+Xiaoming&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=12715&rft.epage=12725&rft_id=info:doi/10.1109%2FCVPR52729.2023.01223&rft.externalDocID=10204758 |