DCFace: Synthetic Face Generation with Dual Condition Diffusion Model

Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 12715 - 12725
Main Authors Kim, Minchul, Liu, Feng, Jain, Anil, Liu, Xiaoming
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code Link
AbstractList Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code Link
Author Liu, Xiaoming
Jain, Anil
Liu, Feng
Kim, Minchul
Author_xml – sequence: 1
  givenname: Minchul
  surname: Kim
  fullname: Kim, Minchul
  email: kimminc2@msu.edu
  organization: Michigan State University,East Lansing,MI,48824
– sequence: 2
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  email: liufeng6@msu.edu
  organization: Michigan State University,East Lansing,MI,48824
– sequence: 3
  givenname: Anil
  surname: Jain
  fullname: Jain, Anil
  email: jain@msu.edu
  organization: Michigan State University,East Lansing,MI,48824
– sequence: 4
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  email: liuxm@msu.edu
  organization: Michigan State University,East Lansing,MI,48824
BookMark eNotjMtOwzAQRQ0CiVL6B134B1LGntjxsENJW5CKQLy2lRtPVKOQoCQV6t_TAqt7z1mcS3HWtA0LMVUwUwroOn9_ejY60zTToHEGSms8ERPKyKEBPDC5UzFSYDGxpOhCTPr-AwBQK2XJjcS8yBe-5Bv5sm-GLQ-xlEeWS26480NsG_kdh60sdr6WeduE-OuKWFW7_vge2sD1lTivfN3z5H_H4m0xf83vktXj8j6_XSVRQzokjEanwZFhAhMqZzYlQ0alrciCVT5FX6pN6twmYDh4Qp96a4w1ATN2Dsdi-teNzLz-6uKn7_ZrBYd6Zhz-AGx7TU4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.01223
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 12725
ExternalDocumentID 10204758
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-e3524d895e905df85bce079c6f96061a43ac1b488bd3d79c93a4a65565d37e883
IEDL.DBID RIE
IngestDate Wed Aug 27 02:56:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-e3524d895e905df85bce079c6f96061a43ac1b488bd3d79c93a4a65565d37e883
PageCount 11
ParticipantIDs ieee_primary_10204758
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5814703
Snippet Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images....
SourceID ieee
SourceType Publisher
StartPage 12715
SubjectTerms Biometrics
Diversity reception
Face recognition
Lighting
Performance gain
Solid modeling
Three-dimensional displays
Training
Title DCFace: Synthetic Face Generation with Dual Condition Diffusion Model
URI https://ieeexplore.ieee.org/document/10204758
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTpzGY4i3cuDa0i5Jl3DdQxOHaQKGdpvSxJEmpg5Be4Bfj5N2QyAhcWtzaCM7lj87_mxCbhDRKwOSRalT_YjjEYpyxVVkZeaUM5l0ELp9TrPJnN8vxKIhqwcuDACE4jOI_WO4y7cbU_lUGVp4L-EIcFukhZFbTdbaJVQYhjKZkg09Lk3U7eB59iB6iB5jPyM89pdI7McQleBDxh0y3f69Lh15iasyj83nr8aM_97eAel-0_XobOeIDskeFEek0-BL2ljv-zEZDQdjbeCOPn4UiPvwyFD_TuvW015D1Kdl6bDSa4rftqGciw5XzlU-qUb94LR1l8zHo6fBJGrGKEQr3E8ZAWIsbqUSoBJhnRS5gaSvDCoDo5dUc6ZNmqMh55ZZXFdMc50JRHqW9UFKdkLaxaaAU0K9dQNolHWOOIsJaZ0GwQFxpGYYHJ2RrhfL8rXulLHcSuT8j_ULsu9VU5deXZJ2-VbBFTr5Mr8Oyv0CWVikeQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHOA0HkO8yYFrS7skXcJ1Dw0Y0wQb2m1KE1eamDoE7QF-PU7bDYGExK3NoY3sWP7s-LMJuUJErwxI5oWJankcj5AXK648K6NEJSaSCRTdPodRf8LvpmJakdULLgwAFMVn4LvH4i7fLk3uUmVo4c2AI8DdJFvo-EVY0rXWKRWGwUykZEWQCwN13X4ePYom4kffTQn33TUS-zFGpfAivToZrv5fFo-8-HkW--bzV2vGf29wlzS-CXt0tHZFe2QD0n1SrxAmrez3_YB0O-2eNnBDnz5SRH54aKh7p2Xzaacj6hKztJPrBcVv26Kgi3bmSZK7tBp1o9MWDTLpdcftvlcNUvDmuJ_MA0RZ3EolQAXCJlLEBoKWMqgOjF9CzZk2YYymHFtmcV0xzXUkEOtZ1gIp2SGppcsUjgh19g2gUdYxIi0mpE00CA6IJDXD8OiYNJxYZq9lr4zZSiInf6xfku3--GEwG9wO70_JjlNTWYh1RmrZWw7n6PKz-KJQ9Bch1KfC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=DCFace%3A+Synthetic+Face+Generation+with+Dual+Condition+Diffusion+Model&rft.au=Kim%2C+Minchul&rft.au=Liu%2C+Feng&rft.au=Jain%2C+Anil&rft.au=Liu%2C+Xiaoming&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=12715&rft.epage=12725&rft_id=info:doi/10.1109%2FCVPR52729.2023.01223&rft.externalDocID=10204758