Deep Reinforcement Learning based Contract Incentive for UAVs and Energy Harvest Assisted Computing

In this paper, we consider a mobile edge computing (MEC) system with multiple unmanned aerial vehicles (UAVs) and stochastic energy harvesting. The UAVs' mobility can help data offloading over a larger geographical area containing multi- hotspots (HSs). If HSs have offloading requests, the disp...

Full description

Saved in:
Bibliographic Details
Published inGLOBECOM 2022 - 2022 IEEE Global Communications Conference pp. 2224 - 2229
Main Authors Chen, Che, Gong, Shimin, Zhang, Wenjie, Zheng, Yifeng, Kiat, Yeo Chai
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/GLOBECOM48099.2022.10001311

Cover

Abstract In this paper, we consider a mobile edge computing (MEC) system with multiple unmanned aerial vehicles (UAVs) and stochastic energy harvesting. The UAVs' mobility can help data offloading over a larger geographical area containing multi- hotspots (HSs). If HSs have offloading requests, the dispatch agent (DA) can recruit different types of UAVs to fly close to HSs and help computation. We aim to maximize the long-term utility of all HSs, subject to the stability of energy queue. The proposed problem is a joint optimization problem of offloading strategy and contract design in a dynamic setting over time. We design a deep reinforcement learning based contract incentive (DRLCI) strategy that solves the joint optimization problem in two steps. Firstly, we use an improved deep Q-network (DQN) algorithm to obtain the offloading decision. Secondly, to motivate UAVs to participate in resources sharing, a contract has been designed for asymmetric information scenarios, and Lagrangian multiplier method has been utilized to approach the optimal contract. Simulation results show the feasibility and efficiency of the proposed strategy. It can achieve a very close-to the performance obtained by complete information scenario.
AbstractList In this paper, we consider a mobile edge computing (MEC) system with multiple unmanned aerial vehicles (UAVs) and stochastic energy harvesting. The UAVs' mobility can help data offloading over a larger geographical area containing multi- hotspots (HSs). If HSs have offloading requests, the dispatch agent (DA) can recruit different types of UAVs to fly close to HSs and help computation. We aim to maximize the long-term utility of all HSs, subject to the stability of energy queue. The proposed problem is a joint optimization problem of offloading strategy and contract design in a dynamic setting over time. We design a deep reinforcement learning based contract incentive (DRLCI) strategy that solves the joint optimization problem in two steps. Firstly, we use an improved deep Q-network (DQN) algorithm to obtain the offloading decision. Secondly, to motivate UAVs to participate in resources sharing, a contract has been designed for asymmetric information scenarios, and Lagrangian multiplier method has been utilized to approach the optimal contract. Simulation results show the feasibility and efficiency of the proposed strategy. It can achieve a very close-to the performance obtained by complete information scenario.
Author Zhang, Wenjie
Zheng, Yifeng
Gong, Shimin
Chen, Che
Kiat, Yeo Chai
Author_xml – sequence: 1
  givenname: Che
  surname: Chen
  fullname: Chen, Che
  organization: School of Computer Sciences, Minnan Normal University,China
– sequence: 2
  givenname: Shimin
  surname: Gong
  fullname: Gong, Shimin
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University,China
– sequence: 3
  givenname: Wenjie
  surname: Zhang
  fullname: Zhang, Wenjie
  organization: School of Computer Sciences, Minnan Normal University,China
– sequence: 4
  givenname: Yifeng
  surname: Zheng
  fullname: Zheng, Yifeng
  organization: School of Computer Sciences, Minnan Normal University,China
– sequence: 5
  givenname: Yeo Chai
  surname: Kiat
  fullname: Kiat, Yeo Chai
  organization: China School of Computer Engineering, Nanyang Technological University,Singapore
BookMark eNo1j1FLwzAUhSPog879Ax8CPrfe2zRt-jjr3AaVgjhfR5rejoDLShIH-_cWp0_n4Zzvg3PHrt3REWOPCCkiVE-rpn1e1u1brqCq0gyyLEUAQIF4xeZVqbAoZC5kDsUtMy9EI38n64ajN3QgF3lD2jvr9rzTgXpeH1302kS-cWaq7Yn4tOXbxWfg2vV86cjvz3yt_YlC5IsQbIi_3GH8jpPnnt0M-ivQ_C9nbPu6_KjXSdOuNvWiSWwGeUz6SgwChFC6oN6UnegMZtRpM2jsVU4woAECMlgoWRGAlApkLhFKKPpSiRl7uHgtEe1Gbw_an3f_38UPC6ZVeA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOBECOM48099.2022.10001311
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665435406
1665435402
EndPage 2229
ExternalDocumentID 10001311
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-d93f30338a6edc7b3bc12ebacfa1d84e0f1c0e0ec16859e00558054510706d783
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:51 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-d93f30338a6edc7b3bc12ebacfa1d84e0f1c0e0ec16859e00558054510706d783
PageCount 6
ParticipantIDs ieee_primary_10001311
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle GLOBECOM 2022 - 2022 IEEE Global Communications Conference
PublicationTitleAbbrev GLOBECOM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8389807
Snippet In this paper, we consider a mobile edge computing (MEC) system with multiple unmanned aerial vehicles (UAVs) and stochastic energy harvesting. The UAVs'...
SourceID ieee
SourceType Publisher
StartPage 2224
SubjectTerms Deep learning
Energy harvesting
Multi-access edge computing
Reinforcement learning
Simulation
Stability analysis
Wireless communication
Title Deep Reinforcement Learning based Contract Incentive for UAVs and Energy Harvest Assisted Computing
URI https://ieeexplore.ieee.org/document/10001311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfBPTarknTpjnq3BRxm4iT3UaTvIoI3dDOg3-9eWmnKAjeQknakJf0S17e9z1CzgrFMovSl24x5YGIZRTkShZBrlPFjdUJM-jvGI7S64m4mSbThqzuuTAA4IPPIMSiv8u3c7NEV1mXRbU8TIu03DyryVrr5LTRzexe3Y4v-r3xUGRu2-OOfpyHqxY_cqd46BhsktHqo3XEyEu4rHRoPn7pMf67V1uk883So3df-LNN1qDcIeYSYEHvwQuiGu_7o42G6hNFyLIUBamQG0XdvwFjhd6Burp0cv74RvPS0r6nA1LMGuQggzoD4lTAdpgAwr2nQyaD_kPvOmgSKQTPPBJVYFVcOKhy1kjBGqljbRgHnZsiZzYTEBXMRBCBYWmWKEBdrsxt5dxylVFqZRbvknY5L2GPUK0FYxJUIY0UuRZa8QRQtZ5zlVue7ZMOjtBsUWtlzFaDc_DH80OygYbyASLiiLSr1yUcO5iv9Ik37ycC5ahl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bS8MwFMaDTlCfVJx4N6Cv3Zo0bZpHndOpu4hssreRy6mI0A3tfPCvN0k7RUHwrZSmLTlNvzQ93-8gdJYJkhqHvrSDSQYs4mEgBc8CqRJBtVEx0W69o9dPOiN2O47HlVnde2EAwCefQcNt-n_5ZqrnbqmsScISD7OMVqzws7i0a62i04qc2bzuDi7arUGPpXbiYz_-KG0s2vyonuLF42oD9ReXLXNGXhrzQjX0xy8i47_vaxPVv316-P5LgbbQEuTbSF8CzPADeCSq9qt_uKKoPmEnWgY7JJVzR2H7dnDZQu-A7bF4dP74hmVucNsbArGrG2RFA9sQuofBtXMlIOx56mh01R62OkFVSiF4piErAiOizIqVjUcCRnMVKU0oKKkzSUzKIMyIDiEETZI0FuDIXKmdzNkBy8PE8DTaQbV8msMuwkoxQjiIjGvOpGJK0Bgct55SIQ1N91Dd9dBkVtIyJovO2f9j_wla6wx73Un3pn93gNZd0Hy6CDtEteJ1DkdW9At17EP9CQL-q7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=GLOBECOM+2022+-+2022+IEEE+Global+Communications+Conference&rft.atitle=Deep+Reinforcement+Learning+based+Contract+Incentive+for+UAVs+and+Energy+Harvest+Assisted+Computing&rft.au=Chen%2C+Che&rft.au=Gong%2C+Shimin&rft.au=Zhang%2C+Wenjie&rft.au=Zheng%2C+Yifeng&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=2224&rft.epage=2229&rft_id=info:doi/10.1109%2FGLOBECOM48099.2022.10001311&rft.externalDocID=10001311