Data-Free Sketch-Based Image Retrieval

Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we identify that for data-scarce tasks like Sketch-Based Image Retrieval (SBIR), where the difficulty in acquiring paired photos and hand-drawn...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 12084 - 12093
Main Authors Chaudhuri, Abhra, Bhunia, Ayan Kumar, Song, Yi-Zhe, Dutta, Anjan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we identify that for data-scarce tasks like Sketch-Based Image Retrieval (SBIR), where the difficulty in acquiring paired photos and hand-drawn sketches limits data-dependent cross-modal learning algorithms, DFL can prove to be a much more practical paradigm. We thus propose Data-Free (DF)-SBIR, where, unlike existing DFL problems, pre-trained, single-modality classification models have to be leveraged to learn a cross-modal metric-space for retrieval without access to any training data. The widespread availability of pre-trained classification models, along with the difficulty in acquiring paired photo-sketch datasets for SBIR justify the practicality of this setting. We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches. We evaluate our model on the Sketchy, TU-Berlin, and QuickDraw benchmarks, designing a variety of baselines based on state-of-the-art DFL literature, and observe that our method surpasses all of them by significant margins. Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data. Implementation is available at https://github.com/abhrac/data-free-sbir.
AbstractList Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we identify that for data-scarce tasks like Sketch-Based Image Retrieval (SBIR), where the difficulty in acquiring paired photos and hand-drawn sketches limits data-dependent cross-modal learning algorithms, DFL can prove to be a much more practical paradigm. We thus propose Data-Free (DF)-SBIR, where, unlike existing DFL problems, pre-trained, single-modality classification models have to be leveraged to learn a cross-modal metric-space for retrieval without access to any training data. The widespread availability of pre-trained classification models, along with the difficulty in acquiring paired photo-sketch datasets for SBIR justify the practicality of this setting. We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches. We evaluate our model on the Sketchy, TU-Berlin, and QuickDraw benchmarks, designing a variety of baselines based on state-of-the-art DFL literature, and observe that our method surpasses all of them by significant margins. Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data. Implementation is available at https://github.com/abhrac/data-free-sbir.
Author Dutta, Anjan
Bhunia, Ayan Kumar
Song, Yi-Zhe
Chaudhuri, Abhra
Author_xml – sequence: 1
  givenname: Abhra
  surname: Chaudhuri
  fullname: Chaudhuri, Abhra
  email: ac1151@exeter.ac.uk
  organization: University of Exeter,UK
– sequence: 2
  givenname: Ayan Kumar
  surname: Bhunia
  fullname: Bhunia, Ayan Kumar
  email: a.bhunia@surrey.ac.uk
  organization: Institute for People-Centred AI, University of Surrey,UK
– sequence: 3
  givenname: Yi-Zhe
  surname: Song
  fullname: Song, Yi-Zhe
  email: y.song@surrey.ac.uk
  organization: Institute for People-Centred AI, University of Surrey,UK
– sequence: 4
  givenname: Anjan
  surname: Dutta
  fullname: Dutta, Anjan
  email: anjan.dutta@surrey.ac.uk
  organization: Institute for People-Centred AI, University of Surrey,UK
BookMark eNotzctOwzAQQFGDQKIt-YMusmLndDy2M_YSQguVKoHKY1v5MYWItqAkQuLvAcHq7s4di5PD-4GFmCqolAI_a57v1xYJfYWAugKlan0kCk_eaQsaFHp3LEZoyUoCsmei6Ps2gkUA0t6NxMV1GIJcdMzlwxsP6VVehZ5zudyHFy7XPHQtf4bduTjdhl3PxX8n4mkxf2xu5eruZtlcrmSLYAaZbW2Vy_n3netI0RAql3JAU8eEkDKRRmMTuwQ-c03Ro3Ho9NZA1KAnYvrntsy8-ejafei-Ngp-dONJfwMpTkGv
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.01163
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350301298
EISSN 2575-7075
EndPage 12093
ExternalDocumentID 10204497
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-d56518dd5030d6b7b47218cda246bc20cd773245ce8c09de67b9248283f40b303
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:17 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-d56518dd5030d6b7b47218cda246bc20cd773245ce8c09de67b9248283f40b303
PageCount 10
ParticipantIDs ieee_primary_10204497
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib052007398
ssib042469789
Score 2.3174155
Snippet Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we...
SourceID ieee
SourceType Publisher
StartPage 12084
SubjectTerms Data privacy
Deep learning
Design methodology
Extraterrestrial measurements
Image retrieval
Multi-modal learning
Propulsion
Training data
Title Data-Free Sketch-Based Image Retrieval
URI https://ieeexplore.ieee.org/document/10204497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J08qVvxmD-Itazab3WyuVksVLKVa6a0kmVmQYitle_HXO9lt_QLBW8ghJDvJvnmZvBnGLpRw1vtU8DL3yJUtJXdGap6ANQUBWg42RHQfBnl_rO4n2WQtVq-1MIhYPz7DODTrWD4s_CpcldEJl0Ipo1uspY1pxFqbzaMkEb1vqdNDOiGdmmItl0uEueo-D0eZJG8yDjXD4xCCSH8UVakxpbfDBpvZNE9JZvGqcrF__5Wo8d_T3WWdL_leNPwEpj22hfN9dnljK8t7S8TocRZsxa8JwCC6e6U_SjSqC2vRruuwce_2qdvn6yIJ_IVGrziQR5YUABmdVsiddoo4XeHB0vdwXgoPWpPTlHksvDCAuSZbKOJZaUl2IgA7YO35Yo6HLCIm4xQSg5LSKgHSlTpPkLqkxcQAHLFOWOT0rcmDMd2s7_iP_hO2Te6Fai4sTlm7Wq7wjCC8cue16T4Ap7GXaA
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3GRCbQ-I4drxSqFpoq6q0qFvlx0VCFS2q0oVfzzlpeUlIbJGHyPbZ-e7L3XdHyBWPjLY2iWguLFCuc0aNYpLGTqsMAU047SO63Z5ojfjDOB2vxOqlFgYAyuQzCP1jGct3c7v0v8rwhrOIcyU3yRY61pmo5Frr48MZUr1vxdN9QSGZqGwlmIsjddN47g9Shv5k6LuGhz4Ikfxoq1KiSnOX9NbzqZJJpuGyMKF9_1Wq8d8T3iP1LwFf0P-Epn2yAbMDcn2nC02bC4DgaeqtRW8RwlzQfsVvSjAoW2vhuauTUfN-2GjRVZsE-oJvL6hDnyzOnEvxvjphpOHI6jLrNO6HsSyyTkp0m1ILmY2UAyHRGhyZVpKjpRDCDkltNp_BEQmQyxgOyKEY0zxyzORSxIBDTEOsnDsmdb_IyVtVCWOyXt_JH-OXZLs17HYmnXbv8ZTs-E2v0qzOSK1YLOEcAb0wF6UZPwDMCZq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Data-Free+Sketch-Based+Image+Retrieval&rft.au=Chaudhuri%2C+Abhra&rft.au=Bhunia%2C+Ayan+Kumar&rft.au=Song%2C+Yi-Zhe&rft.au=Dutta%2C+Anjan&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=12084&rft.epage=12093&rft_id=info:doi/10.1109%2FCVPR52729.2023.01163&rft.externalDocID=10204497