Communication-Efficient Federated Multi-Task Learning with Sparse Sharing

Federated multi-task learning (FMTL) is a promising technology to deal with the severe data heterogeneity issue in federated learning (FL), where each client learns individual models locally and the server extracts similar model parameters from the tasks to keep personalization for models of clients...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) pp. 1 - 6
Main Authors Ai, Yuhan, Chen, Qimei, Liang, Yipeng, Jiang, Hao
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated multi-task learning (FMTL) is a promising technology to deal with the severe data heterogeneity issue in federated learning (FL), where each client learns individual models locally and the server extracts similar model parameters from the tasks to keep personalization for models of clients. Hence, it is essential to precisely extract the model parameters shared among tasks. On the other aspect, the limitation of communication resources would also restrict the model transmission, and thus influence the FMTL performance. To address the above issues, we propose a novel FMTL with Sparse Sharing (FedSS) mechanism that allows clients to share model parameters dynamically according to diversified model structures under limited communication resources. Particularly, we present an adaptive quantization approach for task relevance, which serves as a metric to evaluate the extent of model sharing across tasks. The objective function is formulated to minimize the model transmission latency while ensure the FMTL learning performance via a joint bandwidth allocation and client selection strategy. Closed-form expressions for the optimal client selection and bandwidth allocation are derived based on a alternating direction method of multipliers (ADMM) algorithm. Numerical results show that the proposed FedSS outperforms the benchmarks, and achieves efficient communication performance.
AbstractList Federated multi-task learning (FMTL) is a promising technology to deal with the severe data heterogeneity issue in federated learning (FL), where each client learns individual models locally and the server extracts similar model parameters from the tasks to keep personalization for models of clients. Hence, it is essential to precisely extract the model parameters shared among tasks. On the other aspect, the limitation of communication resources would also restrict the model transmission, and thus influence the FMTL performance. To address the above issues, we propose a novel FMTL with Sparse Sharing (FedSS) mechanism that allows clients to share model parameters dynamically according to diversified model structures under limited communication resources. Particularly, we present an adaptive quantization approach for task relevance, which serves as a metric to evaluate the extent of model sharing across tasks. The objective function is formulated to minimize the model transmission latency while ensure the FMTL learning performance via a joint bandwidth allocation and client selection strategy. Closed-form expressions for the optimal client selection and bandwidth allocation are derived based on a alternating direction method of multipliers (ADMM) algorithm. Numerical results show that the proposed FedSS outperforms the benchmarks, and achieves efficient communication performance.
Author Ai, Yuhan
Chen, Qimei
Jiang, Hao
Liang, Yipeng
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Ai
  fullname: Ai, Yuhan
  email: aiyuhan@whu.edu.cn
  organization: Wuhan University,School of Electronic Information,Wuhan,China,430072
– sequence: 2
  givenname: Qimei
  surname: Chen
  fullname: Chen, Qimei
  email: chenqimei@whu.edu.cn
  organization: Wuhan University,School of Electronic Information,Wuhan,China,430072
– sequence: 3
  givenname: Yipeng
  surname: Liang
  fullname: Liang, Yipeng
  email: liangyipeng@whu.edu.cn
  organization: Wuhan University,School of Electronic Information,Wuhan,China,430072
– sequence: 4
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  email: jianghao@whu.edu.cn
  organization: Wuhan University,School of Electronic Information,Wuhan,China,430072
BookMark eNo1j8FOwzAQRA0Cibb0Dzj4BxLWduJ4jyhqIVIrEC3nyk3W1NA4lZMK8fdEAk6jmcPTvCm7Cl0gxriAVAjA-5dq_VrmupAilSBVKkCiMgYu2FRonWc6M0pfsokcW4K5wRs27_sPAFDCGAVqwqqya9tz8LUdfBeShXO-9hQGvqSGoh2o4evzcfDJ1vaffEU2Bh_e-ZcfDnxzsrEnvjnYOG637NrZY0_zv5yxt-ViWz4lq-fHqnxYJV5CNiSNrBGdwgyRcJTYm8KiVjVgjk6bBrPxWu4a5UAQCGlVIWqnaa9JFlBkasbufrmeiHan6Fsbv3f_6uoHxchPeA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PIMRC56721.2023.10293880
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665464836
9781665464833
EISSN 2166-9589
EndPage 6
ExternalDocumentID 10293880
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-d2c99f39499e9109b87a963c0959f68d941885fd3f01e012a371cf6eb6e270743
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:42 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-d2c99f39499e9109b87a963c0959f68d941885fd3f01e012a371cf6eb6e270743
PageCount 6
ParticipantIDs ieee_primary_10293880
PublicationCentury 2000
PublicationDate 2023-Sept.-5
PublicationDateYYYYMMDD 2023-09-05
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
PublicationTitleAbbrev PIMRC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188303
Score 1.8918982
Snippet Federated multi-task learning (FMTL) is a promising technology to deal with the severe data heterogeneity issue in federated learning (FL), where each client...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
bandwidth allocation
Channel allocation
client selection
Closed-form solutions
Data models
Federated multi-task learning
Multitasking
Numerical models
Quantization (signal)
sparse sharing
Title Communication-Efficient Federated Multi-Task Learning with Sparse Sharing
URI https://ieeexplore.ieee.org/document/10293880
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEB6qp_bSl6Vvcug1230mm7MoWlCkVfAmm2S2FEGlXS_99Z1E19ZCobcQyBAmyc5j5_sG4CHG0EoZIVcSDU-VzXmutKVQJRLCFIUUvn_KYCh6k_Rpmk23YHWPhUFEX3yGgRv6f_l2adYuVUYvnIwTXbgGNKRSG7DWLqFClzOn73FdrROqx1F_8NzOBMU4gWsSHtTL9xqpeDvSPYZhvYNN-cg8WFc6MJ-_yBn_vcUTaH1D9thoZ4xO4QAXZ3D0g23wHPp7YBDe8eQRJI11HaEE-ZyWeTguHxcfc7YlXn1lLlPLXlYUACNz9M4014JJtzNu9_i2kwJ_i8O04jY2SpWJI6JB8g-UzmVBL8-4JGApcqtSUl5W2qQMIySTVSQyMqVALTCWzsm4gOZiucBLYGitzRJZohI6LbUsrI9Z0oRkGxJyBS2nldlqQ5YxqxVy_cf8DRy6w_FlW9ktNKv3Nd6Rna_0vT_fLysqplA
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHtSLL4xve_DadZ_t9kwkoECIQsKN7LazxpAA0eXir3daWBQTE29ND5Nm-phH5_sG4C5E30gZIFcSNY-VSXmqckOhSiCEzjIpXP-Ubk-0hvHjKBmtwOoOC4OIrvgMPTt0f_lmphc2VUY3nIwTHbht2EmsY7GEa61TKnQ8U3qRq3odX933293nRiIoyvFsm3CvErDRSsVZkuYB9Ko1LAtIJt6izD39-Yue8d-LPIT6N2iP9dfm6Ai2cHoM-z_4Bk-gvQEH4Q-OPoKksaallCCv0zAHyOWD7GPCVtSrr8zmatnLnEJgZJbgmebqMGw-DBotvuqlwN9CPy65CbVSRWSpaJA8BJWnMqO7p20asBCpUTEpLylMVPgBktHKIhnoQmAuMJTWzTiF2nQ2xTNgaIxJIlmgEnlc5DIzLmqJI5KtScg51K1WxvMlXca4UsjFH_O3sNsadDvjTrv3dAl7dqNcEVdyBbXyfYHXZPXL_Mbt9RcShqmd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2023+IEEE+34th+Annual+International+Symposium+on+Personal%2C+Indoor+and+Mobile+Radio+Communications+%28PIMRC%29&rft.atitle=Communication-Efficient+Federated+Multi-Task+Learning+with+Sparse+Sharing&rft.au=Ai%2C+Yuhan&rft.au=Chen%2C+Qimei&rft.au=Liang%2C+Yipeng&rft.au=Jiang%2C+Hao&rft.date=2023-09-05&rft.pub=IEEE&rft.eissn=2166-9589&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPIMRC56721.2023.10293880&rft.externalDocID=10293880