HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation
Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trad...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4779 - 4789 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR52729.2023.00463 |
Cover
Loading…
Abstract | Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. HuManiFlow outperforms state-of-the-art probabilistic approaches on the 3DPW and SSP-3D datasets. |
---|---|
AbstractList | Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. HuManiFlow outperforms state-of-the-art probabilistic approaches on the 3DPW and SSP-3D datasets. |
Author | Sengupta, Akash Budvytis, Ignas Cipolla, Roberto |
Author_xml | – sequence: 1 givenname: Akash surname: Sengupta fullname: Sengupta, Akash email: as2562@cam.ac.uk organization: University of Cambridge – sequence: 2 givenname: Ignas surname: Budvytis fullname: Budvytis, Ignas email: ib255@cam.ac.uk organization: University of Cambridge – sequence: 3 givenname: Roberto surname: Cipolla fullname: Cipolla, Roberto email: rc10001@cam.ac.uk organization: University of Cambridge |
BookMark | eNotj01PAjEYhKvRRET-AYce9bD4tu9-1RtZwDVBIaJeSXfbas3Sku2i8d_LRk8zh5lnMpfkzHmnCRkzmDAG4rZ4Wz8nPONiwoHjBCBO8YSMRCZyTACBcZGfkgGDFKNUMHFBRiF8AgByxlKRD8hXeXiUzi4a_31Hp67WofNtVHinbGePY4o--XYnGxuse6d9LFDv6GZ1jTe0bxrfqECNb2l52ElH1z5oKp2imw-513RmQ9fa6tDD6Dx0did7e0XOjWyCHv3rkLwu5i9FGS1X9w_FdBlZDnEXKVDGqBp4jMxoOL4Bnqg6MYC1zCGOM8h0lSZaQGXQVGi0ibHKE2V4JYXEIRn_ca3Wertvj_Ptz5YBB2Q5x1_25mCH |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52729.2023.00463 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350301298 |
EISSN | 1063-6919 |
EndPage | 4789 |
ExternalDocumentID | 10203182 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i204t-d0dffdc02431fe0298025dc5f03ca8044707eb65e90bf3fb3fef43b85df2ba9a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:56:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-d0dffdc02431fe0298025dc5f03ca8044707eb65e90bf3fb3fef43b85df2ba9a3 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10203182 |
PublicationCentury | 2000 |
PublicationDate | 2023-June |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.3089082 |
Snippet | Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4779 |
SubjectTerms | body Estimation gesture Humans: Face Kinematics Manifolds movement pose Shape Solid modeling Three-dimensional displays Training |
Title | HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation |
URI | https://ieeexplore.ieee.org/document/10203182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6f5MfGbHDzooTVr2i71JnNjCJtDnew2kibB4WiHbRX8632v7SYKgrc2tE3I5--9vt_vEXIeSeErroQjlPQdPzShIz3BHDCeY6YUj8IYycnDUTiY-HfTYFqT1UsujDGmDD4zLl6W__J1GhfoKoMV7uEchB13Eyy3iqy1dqhwMGXCSNT0uDaLrrrP44fAA_ToYo5wF01B_iOJSnmG9JtktKq9Ch15dYtcufHnL2HGfzdvm7S-6Xp0vD6IdsiGSXZJs8aXtF692R55HxRDmcz7i_Tjmt5gGRjcDnxEV4JFmo4QwS7m6D-g-FhG04Q-3l_wS4pv2nShMwowl5a-fzpOM0NlAnW8yKWhtyjCW-fPoj3YOypaZItM-r2n7sCp8y44c4_5uaOZtlbHqFXYtgY12gEY6TiwjMdSMN_vMMykEpiIKcut4tZYH8Y70NZTMpJ8nzQSaPUBoXDHTNiRWijUuvdEWwawbdhOZLxQMH1IWtiPs2UlrTFbdeHRH-XHZAvHsorVOiGN_K0wp4AKcnVWzoYvQ4K30Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG_MPOhpfsz4bQ8e9AB2FFjxZuaWqRsuupndlpa2cXGBRUAT_3r7AGc0MfEGDdCmn7_3eL_fQ-g04MwVVDCLCe5arq98izuMWMZ4jogQNPAjICcPQr83dm8n3qQiqxdcGKVUEXymbLgs_uXLJMrBVWZWuANz0Oy4qx6wcUu61tKlQo0x4wesIsg1SXDRfho-eI7BjzZkCbfBGKQ_0qgUp0i3jsKv-svgkRc7z4QdffySZvx3AzdQ45uwh4fLo2gTrah4C9UrhImr9Ztuo7dePuDxrDtP3i_xFZQZk9syH5GlZJHEIWDY-Qw8CBgeS3ES48f7M3qO4U2dzGWKDdDFhfcfD5NUYR6bOp75QuFrkOGtMmjhjtk9SmJkA427nVG7Z1WZF6yZQ9zMkkRqLSNQK2xqBSrtBhrJyNOERpwR120RyKXiqYAITbWgWmnXjLgntSN4wOkOqsWm1bsImzui_BaXTIDavcOa3DMbh24FyvEZkXuoAf04XZTiGtOvLtz_o_wErfVGg_60fxPeHaB1GNcycusQ1bLXXB0ZjJCJ42JmfAIEj7sZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HuManiFlow%3A+Ancestor-Conditioned+Normalising+Flows+on+SO%283%29+Manifolds+for+Human+Pose+and+Shape+Distribution+Estimation&rft.au=Sengupta%2C+Akash&rft.au=Budvytis%2C+Ignas&rft.au=Cipolla%2C+Roberto&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4779&rft.epage=4789&rft_id=info:doi/10.1109%2FCVPR52729.2023.00463&rft.externalDocID=10203182 |