HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation

Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trad...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4779 - 4789
Main Authors Sengupta, Akash, Budvytis, Ignas, Cipolla, Roberto
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2023
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR52729.2023.00463

Cover

Loading…
Abstract Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. HuManiFlow outperforms state-of-the-art probabilistic approaches on the 3DPW and SSP-3D datasets.
AbstractList Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. HuManiFlow outperforms state-of-the-art probabilistic approaches on the 3DPW and SSP-3D datasets.
Author Sengupta, Akash
Budvytis, Ignas
Cipolla, Roberto
Author_xml – sequence: 1
  givenname: Akash
  surname: Sengupta
  fullname: Sengupta, Akash
  email: as2562@cam.ac.uk
  organization: University of Cambridge
– sequence: 2
  givenname: Ignas
  surname: Budvytis
  fullname: Budvytis, Ignas
  email: ib255@cam.ac.uk
  organization: University of Cambridge
– sequence: 3
  givenname: Roberto
  surname: Cipolla
  fullname: Cipolla, Roberto
  email: rc10001@cam.ac.uk
  organization: University of Cambridge
BookMark eNotj01PAjEYhKvRRET-AYce9bD4tu9-1RtZwDVBIaJeSXfbas3Sku2i8d_LRk8zh5lnMpfkzHmnCRkzmDAG4rZ4Wz8nPONiwoHjBCBO8YSMRCZyTACBcZGfkgGDFKNUMHFBRiF8AgByxlKRD8hXeXiUzi4a_31Hp67WofNtVHinbGePY4o--XYnGxuse6d9LFDv6GZ1jTe0bxrfqECNb2l52ElH1z5oKp2imw-513RmQ9fa6tDD6Dx0did7e0XOjWyCHv3rkLwu5i9FGS1X9w_FdBlZDnEXKVDGqBp4jMxoOL4Bnqg6MYC1zCGOM8h0lSZaQGXQVGi0ibHKE2V4JYXEIRn_ca3Wertvj_Ptz5YBB2Q5x1_25mCH
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52729.2023.00463
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350301298
EISSN 1063-6919
EndPage 4789
ExternalDocumentID 10203182
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-d0dffdc02431fe0298025dc5f03ca8044707eb65e90bf3fb3fef43b85df2ba9a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:56:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-d0dffdc02431fe0298025dc5f03ca8044707eb65e90bf3fb3fef43b85df2ba9a3
PageCount 11
ParticipantIDs ieee_primary_10203182
PublicationCentury 2000
PublicationDate 2023-June
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.3089082
Snippet Monocular 3D human pose and shape estimation is an illposed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict...
SourceID ieee
SourceType Publisher
StartPage 4779
SubjectTerms body
Estimation
gesture
Humans: Face
Kinematics
Manifolds
movement
pose
Shape
Solid modeling
Three-dimensional displays
Training
Title HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds for Human Pose and Shape Distribution Estimation
URI https://ieeexplore.ieee.org/document/10203182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6f5MfGbHDzooTVr2i71JnNjCJtDnew2kibB4WiHbRX8632v7SYKgrc2tE3I5--9vt_vEXIeSeErroQjlPQdPzShIz3BHDCeY6YUj8IYycnDUTiY-HfTYFqT1UsujDGmDD4zLl6W__J1GhfoKoMV7uEchB13Eyy3iqy1dqhwMGXCSNT0uDaLrrrP44fAA_ToYo5wF01B_iOJSnmG9JtktKq9Ch15dYtcufHnL2HGfzdvm7S-6Xp0vD6IdsiGSXZJs8aXtF692R55HxRDmcz7i_Tjmt5gGRjcDnxEV4JFmo4QwS7m6D-g-FhG04Q-3l_wS4pv2nShMwowl5a-fzpOM0NlAnW8yKWhtyjCW-fPoj3YOypaZItM-r2n7sCp8y44c4_5uaOZtlbHqFXYtgY12gEY6TiwjMdSMN_vMMykEpiIKcut4tZYH8Y70NZTMpJ8nzQSaPUBoXDHTNiRWijUuvdEWwawbdhOZLxQMH1IWtiPs2UlrTFbdeHRH-XHZAvHsorVOiGN_K0wp4AKcnVWzoYvQ4K30Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG_MPOhpfsz4bQ8e9AB2FFjxZuaWqRsuupndlpa2cXGBRUAT_3r7AGc0MfEGDdCmn7_3eL_fQ-g04MwVVDCLCe5arq98izuMWMZ4jogQNPAjICcPQr83dm8n3qQiqxdcGKVUEXymbLgs_uXLJMrBVWZWuANz0Oy4qx6wcUu61tKlQo0x4wesIsg1SXDRfho-eI7BjzZkCbfBGKQ_0qgUp0i3jsKv-svgkRc7z4QdffySZvx3AzdQ45uwh4fLo2gTrah4C9UrhImr9Ztuo7dePuDxrDtP3i_xFZQZk9syH5GlZJHEIWDY-Qw8CBgeS3ES48f7M3qO4U2dzGWKDdDFhfcfD5NUYR6bOp75QuFrkOGtMmjhjtk9SmJkA427nVG7Z1WZF6yZQ9zMkkRqLSNQK2xqBSrtBhrJyNOERpwR120RyKXiqYAITbWgWmnXjLgntSN4wOkOqsWm1bsImzui_BaXTIDavcOa3DMbh24FyvEZkXuoAf04XZTiGtOvLtz_o_wErfVGg_60fxPeHaB1GNcycusQ1bLXXB0ZjJCJ42JmfAIEj7sZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HuManiFlow%3A+Ancestor-Conditioned+Normalising+Flows+on+SO%283%29+Manifolds+for+Human+Pose+and+Shape+Distribution+Estimation&rft.au=Sengupta%2C+Akash&rft.au=Budvytis%2C+Ignas&rft.au=Cipolla%2C+Roberto&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4779&rft.epage=4789&rft_id=info:doi/10.1109%2FCVPR52729.2023.00463&rft.externalDocID=10203182