Experimental Evaluation of ML Models for Dynamic VNF Autoscaling

Network Functions Virtualization (NFV) is a key aspect deeply integrated in the latest 5G networks, allowing for the provisioning of elastic resources that adapt in a flexible manner based on the overall network demand. The adoption of NFV architectures is empowered through the evolution of cloud-na...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Conference on Standards for Communications and Networking (CSCN) pp. 157 - 162
Main Authors Zalokostas-Diplas, Vasileios, Makris, Nikos, Passas, Virgilios, Korakis, Thanasis
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Network Functions Virtualization (NFV) is a key aspect deeply integrated in the latest 5G networks, allowing for the provisioning of elastic resources that adapt in a flexible manner based on the overall network demand. The adoption of NFV architectures is empowered through the evolution of cloud-native and hypervisor tools to support service monitoring, and orchestrate the appropriate decisions for provisioning the scale of the network. Such decisions may directly impact the overall quality of service and experience for users, as well as the energy consumption that the resources use. To this aim, machine learning (ML) - driven optimization for these decisions, relying on inferring the values of future monitored metrics, can assist in deciding proactively on the network scale. In this work, we employ three different candidate solutions (statistical, tree- and CNN-based) for determining the scale of network functions deployed within a cluster of resources, subject to the user demand. We compare and evaluate the different schemes in a real testbed environment, and discuss the benefits of ML-driven optimizations against existing state-of-the-art approaches.
AbstractList Network Functions Virtualization (NFV) is a key aspect deeply integrated in the latest 5G networks, allowing for the provisioning of elastic resources that adapt in a flexible manner based on the overall network demand. The adoption of NFV architectures is empowered through the evolution of cloud-native and hypervisor tools to support service monitoring, and orchestrate the appropriate decisions for provisioning the scale of the network. Such decisions may directly impact the overall quality of service and experience for users, as well as the energy consumption that the resources use. To this aim, machine learning (ML) - driven optimization for these decisions, relying on inferring the values of future monitored metrics, can assist in deciding proactively on the network scale. In this work, we employ three different candidate solutions (statistical, tree- and CNN-based) for determining the scale of network functions deployed within a cluster of resources, subject to the user demand. We compare and evaluate the different schemes in a real testbed environment, and discuss the benefits of ML-driven optimizations against existing state-of-the-art approaches.
Author Passas, Virgilios
Zalokostas-Diplas, Vasileios
Korakis, Thanasis
Makris, Nikos
Author_xml – sequence: 1
  givenname: Vasileios
  surname: Zalokostas-Diplas
  fullname: Zalokostas-Diplas, Vasileios
  email: vzalokost@uth.gr
  organization: University of Thessaly,Dept. of Electrical and Computer Engineering,Greece
– sequence: 2
  givenname: Nikos
  surname: Makris
  fullname: Makris, Nikos
  email: nimakris@uth.gr
  organization: University of Thessaly,Dept. of Electrical and Computer Engineering,Greece
– sequence: 3
  givenname: Virgilios
  surname: Passas
  fullname: Passas, Virgilios
  email: vipassas@uth.gr
  organization: University of Thessaly,Dept. of Electrical and Computer Engineering,Greece
– sequence: 4
  givenname: Thanasis
  surname: Korakis
  fullname: Korakis, Thanasis
  email: korakis@uth.gr
  organization: University of Thessaly,Dept. of Electrical and Computer Engineering,Greece
BookMark eNo1j0tOwzAUAI0EC1q4ARK-QILfc-wkO6qQFqS0LPhsK2M_I0upXSUporenErCa3Whmxs5jisTYLYgcQNR3zUuzUaVAmaNAzEEIBQB4xmagtSpKjVBcsvv2e09D2FGcTM_bL9MfzBRS5MnzdcfXyVE_cp8G_nCMZhcsf98s-eIwpdGaPsTPK3bhTT_S9R_n7G3ZvjaPWfe8emoWXRZQFFNmvbVOaaRaOHCgq8ojofuoCm-skpUEC056B7VCXwstRWlPic45K0n6Qs7Zza83ENF2f0o2w3H7fyV_AG5ARvs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSCN57023.2022.10051112
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665476214
9781665476218
EndPage 162
ExternalDocumentID 10051112
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-cfccd562e90d1d1688f2e2db84fac53831c1d3fd1952f906307c762dddc3e3f43
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:33 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-cfccd562e90d1d1688f2e2db84fac53831c1d3fd1952f906307c762dddc3e3f43
PageCount 6
ParticipantIDs ieee_primary_10051112
PublicationCentury 2000
PublicationDate 2022-Nov.-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2022 IEEE Conference on Standards for Communications and Networking (CSCN)
PublicationTitleAbbrev CSCN
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8245687
Snippet Network Functions Virtualization (NFV) is a key aspect deeply integrated in the latest 5G networks, allowing for the provisioning of elastic resources that...
SourceID ieee
SourceType Publisher
StartPage 157
SubjectTerms Cloud computing
Energy consumption
Machine learning
Measurement
Network function virtualization
Quality of service
Virtual machine monitors
Title Experimental Evaluation of ML Models for Dynamic VNF Autoscaling
URI https://ieeexplore.ieee.org/document/10051112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J08qVnyzB6-J2VceN6W2FLFB0EpvJdmZBVEascnFX-9s0voCwVsIIclmNvvNJPN9H2PnGSiVRGho8soy0LYwQUHIFOgSTKEKhVnk2ciTPB5P9c3MzFZk9ZYLg4ht8xmGfrP9lw-VbfynMnrDaQoJ7ym8SZVbR9Za9WyJKLsY3A9ykxAIUdknZbg--odvSgsbo22Wry_YdYs8h01dhvb9lxbjv-9oh_W_GHr87hN7dtkGLvbY5fCbXD8ffup488rxyS33tmcvS05ZKr_ufOj5Yz7iV01dLSlSdJ4-m46GD4NxsHJICJ5kpOvAOmuBMhh6oiBAxGnqJEooU-0KS0uZElaAciAyI13m5bUSS6sfAFiFymm1z3qLaoEHjMdFSpWYJXCKjQaTZE4bREv5UpIBQnzI-n7489dOBGO-HvnRH_uP2ZaPgqftyfSE9eq3Bk8Jv-vyrI3bB2GSmqw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB2kLnSlYsW3s3CbmHnlsVNqS9U2CLbSXUnmzoBYGrHJxq_3TtLWBwjuQgiZTO7MnDvJPecQcpmAEFFgFA5enntSZ8rLEJk8mYPKRCZMEjg28jAN-2N5P1GTJVm95sIYY-riM-O7w_pfPhS6cp_KcIbjEGLOU3gTgV-xhq61rNpiQXLVeeqkKkIYwo0f5_7q-h_OKTVw9HZIumqyqRd59asy9_XHLzXGfz_TLml_cfTo4xp99siGme-T6-43wX7aXSt508LS4YA647PZgmKeSm8bJ3r6nPboTVUWC4wV3qdNxr3uqNP3lh4J3gsPZOlpqzVgDoPvFBiwMI4tNxzyWNpM42ImmGYgLLBEcZs4ga1I4_oHAFoYYaU4IK15MTeHhIZZjHsxjfAUKgkqSqxUxmjMmKIEDIRHpO26P31rZDCmq54f_3H-gmz1R8PBdHCXPpyQbRcRR-Lj8Slple-VOUM0L_PzOoafpqid9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Conference+on+Standards+for+Communications+and+Networking+%28CSCN%29&rft.atitle=Experimental+Evaluation+of+ML+Models+for+Dynamic+VNF+Autoscaling&rft.au=Zalokostas-Diplas%2C+Vasileios&rft.au=Makris%2C+Nikos&rft.au=Passas%2C+Virgilios&rft.au=Korakis%2C+Thanasis&rft.date=2022-11-28&rft.pub=IEEE&rft.spage=157&rft.epage=162&rft_id=info:doi/10.1109%2FCSCN57023.2022.10051112&rft.externalDocID=10051112