GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification
Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detec...
Saved in:
Published in | 2023 IEEE International Conference on Image Processing (ICIP) pp. 3454 - 3458 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIP49359.2023.10222689 |
Cover
Loading…
Abstract | Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detect glaucoma from retinal fundus images. However, such methods mainly focus on solving binary classification tasks and have not been thoroughly explored for the detection of different glaucoma stages, which is relatively challenging due to minute lesion size variations and high inter-class similarities. This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification. We introduce a global self-attention module (GSAM) consisting of two parallel attention modules, a channel attention module (CAM) and a spatial attention module (SAM), to learn global feature dependencies across channel and spatial dimensions. The GSAM encourages extracting more discriminative and class-specific features from the fundus images. The experimental results on a publicly available dataset demonstrate that our GS-Net outperforms state-of- the-art methods. Also, the GSAM achieves competitive performance against popular attention modules. |
---|---|
AbstractList | Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detect glaucoma from retinal fundus images. However, such methods mainly focus on solving binary classification tasks and have not been thoroughly explored for the detection of different glaucoma stages, which is relatively challenging due to minute lesion size variations and high inter-class similarities. This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification. We introduce a global self-attention module (GSAM) consisting of two parallel attention modules, a channel attention module (CAM) and a spatial attention module (SAM), to learn global feature dependencies across channel and spatial dimensions. The GSAM encourages extracting more discriminative and class-specific features from the fundus images. The experimental results on a publicly available dataset demonstrate that our GS-Net outperforms state-of- the-art methods. Also, the GSAM achieves competitive performance against popular attention modules. |
Author | Das, Dipankar Nayak, Deepak Ranjan |
Author_xml | – sequence: 1 givenname: Dipankar surname: Das fullname: Das, Dipankar organization: Malaviya National Institute of Technology,Department of CSE,Jaipur,India – sequence: 2 givenname: Deepak Ranjan surname: Nayak fullname: Nayak, Deepak Ranjan organization: Malaviya National Institute of Technology,Department of CSE,Jaipur,India |
BookMark | eNo1j81KxDAYACPowV19A8G8QGr-2jTelqK1sNaF6nn5mn6RQLaVNj349irqaU4zMBtyPk4jEnIreCYEt3dN1Ry0VbnNJJcqE1xKWZT2jGyEkaWwpcqLS3KoO9Ziuqd1nHqItMPo2S4lHFOYRlqvYcCBVm1L_TTT5zWmwLoE7_gtwOqmE9AqwrIEHxz8KFfkwkNc8PqPW_L2-PBaPbH9S91Uuz0LkuvEHIC2vbPa5cIrh71H7sD3ihs3OKO0lIhyGIwvvLHAEUo3aOexUMIbrtWW3Px2AyIeP-Zwgvnz-H-pvgClkU2h |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP49359.2023.10222689 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728198356 9781728198354 |
EndPage | 3458 |
ExternalDocumentID | 10222689 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Engineering Research Board funderid: 10.13039/501100001843 |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i204t-caa49bc94c51f3cebfe0cafb307cdc73422ee2dd7f6f79a0ea8cd4cfe631f7043 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:48 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-caa49bc94c51f3cebfe0cafb307cdc73422ee2dd7f6f79a0ea8cd4cfe631f7043 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10222689 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-8 |
PublicationDateYYYYMMDD | 2023-10-08 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.275 |
Snippet | Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3454 |
SubjectTerms | Blindness CAM CNN Feature extraction Glaucoma Global self-attention module Lesions Multi-stage glaucoma classification Real-time systems Retina SAM Task analysis |
Title | GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification |
URI | https://ieeexplore.ieee.org/document/10222689 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TdW3atN6kuB-CZTAHu42X5EWGsomkF_96k3RTFARvIaQk5DW895Lvex8hNzqTmQCZMWF4zLgsgBWpFgwK5yuU12NUnuD8WOfjOX9YZIstWT1wYRAxgM8w8s3wlq83qvFXZf2QneRF2SEdl7m1ZK0tZmsQl_1JNZlyzzSNvCZ4tBv9QzcluI3hAal3E7ZokZeosTJSH79qMf57RYek983Qo9Mv33NE9nB9TKajGavR3tK2kD-d4athd9a2iEY6alYaNa3qmrpIlQbqLXPB5jO6D6Bxvx7QoJHp0UPBYD0yH94_VWO2VUxgqyTmlikAXkpVcpUNTKpQGowVGOkOstJKpDxJEBOthcmNKCFG8NpFymCeDoyIeXpCuuvNGk8JdefaRWe89KU8ucu4CzAmAalAuU4o8Iz0_HYs39qiGMvdTpz_0X9B9r1VWvjcJena9wavnD-38jrY8RM2HKHO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjNdrub_fImxdpquxTaQm9lkkykKK1I9uKvN8m2ioLgLYSEhEzCTJL35hFyoxKRZCASlmkeMi5yYHmsMga59RXS6TFKR3Aelmlvyh9nyWxNVvdcGET04DMMXNH_5auVrNxTWcvfTtK82CY7iWPj1nStNWqrHRatfqc_4o5rGjhV8GDT_odyincc3X1Sboas8SIvQWVEID9-ZWP895wOSPObo0dHX97nkGzh8oiMHsasRHNL61T-dIyvmt0ZU2Ma6UO1UKhopyypjVWpJ98yG24-o-0Ald18QL1KpsMPeZM1ybR7P-n02FozgS2ikBsmAXghZMFl0taxRKExlKCFPcpSySzmUYQYKZXpVGcFhAhOvUhqTOO2zkIeH5PGcrXEE0LtybbxGS9cMk9u79w5aB2BkCBtJeR4SppuOeZvdVqM-WYlzv6ovya7vclwMB_0y6dzsucsVIPpLkjDvFd4ab27EVfepp_VPaUW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=GS-Net%3A+Global+Self-Attention+Guided+CNN+for+Multi-Stage+Glaucoma+Classification&rft.au=Das%2C+Dipankar&rft.au=Nayak%2C+Deepak+Ranjan&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3454&rft.epage=3458&rft_id=info:doi/10.1109%2FICIP49359.2023.10222689&rft.externalDocID=10222689 |