GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification

Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detec...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 3454 - 3458
Main Authors Das, Dipankar, Nayak, Deepak Ranjan
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text
DOI10.1109/ICIP49359.2023.10222689

Cover

Loading…
Abstract Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detect glaucoma from retinal fundus images. However, such methods mainly focus on solving binary classification tasks and have not been thoroughly explored for the detection of different glaucoma stages, which is relatively challenging due to minute lesion size variations and high inter-class similarities. This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification. We introduce a global self-attention module (GSAM) consisting of two parallel attention modules, a channel attention module (CAM) and a spatial attention module (SAM), to learn global feature dependencies across channel and spatial dimensions. The GSAM encourages extracting more discriminative and class-specific features from the fundus images. The experimental results on a publicly available dataset demonstrate that our GS-Net outperforms state-of- the-art methods. Also, the GSAM achieves competitive performance against popular attention modules.
AbstractList Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detect glaucoma from retinal fundus images. However, such methods mainly focus on solving binary classification tasks and have not been thoroughly explored for the detection of different glaucoma stages, which is relatively challenging due to minute lesion size variations and high inter-class similarities. This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification. We introduce a global self-attention module (GSAM) consisting of two parallel attention modules, a channel attention module (CAM) and a spatial attention module (SAM), to learn global feature dependencies across channel and spatial dimensions. The GSAM encourages extracting more discriminative and class-specific features from the fundus images. The experimental results on a publicly available dataset demonstrate that our GS-Net outperforms state-of- the-art methods. Also, the GSAM achieves competitive performance against popular attention modules.
Author Das, Dipankar
Nayak, Deepak Ranjan
Author_xml – sequence: 1
  givenname: Dipankar
  surname: Das
  fullname: Das, Dipankar
  organization: Malaviya National Institute of Technology,Department of CSE,Jaipur,India
– sequence: 2
  givenname: Deepak Ranjan
  surname: Nayak
  fullname: Nayak, Deepak Ranjan
  organization: Malaviya National Institute of Technology,Department of CSE,Jaipur,India
BookMark eNo1j81KxDAYACPowV19A8G8QGr-2jTelqK1sNaF6nn5mn6RQLaVNj349irqaU4zMBtyPk4jEnIreCYEt3dN1Ry0VbnNJJcqE1xKWZT2jGyEkaWwpcqLS3KoO9Ziuqd1nHqItMPo2S4lHFOYRlqvYcCBVm1L_TTT5zWmwLoE7_gtwOqmE9AqwrIEHxz8KFfkwkNc8PqPW_L2-PBaPbH9S91Uuz0LkuvEHIC2vbPa5cIrh71H7sD3ihs3OKO0lIhyGIwvvLHAEUo3aOexUMIbrtWW3Px2AyIeP-Zwgvnz-H-pvgClkU2h
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222689
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728198356
9781728198354
EndPage 3458
ExternalDocumentID 10222689
Genre orig-research
GrantInformation_xml – fundername: Science and Engineering Research Board
  funderid: 10.13039/501100001843
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-caa49bc94c51f3cebfe0cafb307cdc73422ee2dd7f6f79a0ea8cd4cfe631f7043
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-caa49bc94c51f3cebfe0cafb307cdc73422ee2dd7f6f79a0ea8cd4cfe631f7043
PageCount 5
ParticipantIDs ieee_primary_10222689
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.275
Snippet Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost...
SourceID ieee
SourceType Publisher
StartPage 3454
SubjectTerms Blindness
CAM
CNN
Feature extraction
Glaucoma
Global self-attention module
Lesions
Multi-stage glaucoma classification
Real-time systems
Retina
SAM
Task analysis
Title GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification
URI https://ieeexplore.ieee.org/document/10222689
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TdW3atN6kuB-CZTAHu42X5EWGsomkF_96k3RTFARvIaQk5DW895Lvex8hNzqTmQCZMWF4zLgsgBWpFgwK5yuU12NUnuD8WOfjOX9YZIstWT1wYRAxgM8w8s3wlq83qvFXZf2QneRF2SEdl7m1ZK0tZmsQl_1JNZlyzzSNvCZ4tBv9QzcluI3hAal3E7ZokZeosTJSH79qMf57RYek983Qo9Mv33NE9nB9TKajGavR3tK2kD-d4athd9a2iEY6alYaNa3qmrpIlQbqLXPB5jO6D6Bxvx7QoJHp0UPBYD0yH94_VWO2VUxgqyTmlikAXkpVcpUNTKpQGowVGOkOstJKpDxJEBOthcmNKCFG8NpFymCeDoyIeXpCuuvNGk8JdefaRWe89KU8ucu4CzAmAalAuU4o8Iz0_HYs39qiGMvdTpz_0X9B9r1VWvjcJena9wavnD-38jrY8RM2HKHO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjNdrub_fImxdpquxTaQm9lkkykKK1I9uKvN8m2ioLgLYSEhEzCTJL35hFyoxKRZCASlmkeMi5yYHmsMga59RXS6TFKR3Aelmlvyh9nyWxNVvdcGET04DMMXNH_5auVrNxTWcvfTtK82CY7iWPj1nStNWqrHRatfqc_4o5rGjhV8GDT_odyincc3X1Sboas8SIvQWVEID9-ZWP895wOSPObo0dHX97nkGzh8oiMHsasRHNL61T-dIyvmt0ZU2Ma6UO1UKhopyypjVWpJ98yG24-o-0Ald18QL1KpsMPeZM1ybR7P-n02FozgS2ikBsmAXghZMFl0taxRKExlKCFPcpSySzmUYQYKZXpVGcFhAhOvUhqTOO2zkIeH5PGcrXEE0LtybbxGS9cMk9u79w5aB2BkCBtJeR4SppuOeZvdVqM-WYlzv6ovya7vclwMB_0y6dzsucsVIPpLkjDvFd4ab27EVfepp_VPaUW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=GS-Net%3A+Global+Self-Attention+Guided+CNN+for+Multi-Stage+Glaucoma+Classification&rft.au=Das%2C+Dipankar&rft.au=Nayak%2C+Deepak+Ranjan&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3454&rft.epage=3458&rft_id=info:doi/10.1109%2FICIP49359.2023.10222689&rft.externalDocID=10222689