Realistic Saliency Guided Image Enhancement
Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects. These edits are challenging, requiring a delicate balance between manipulating the viewer's attention while maintaining photo realism. Wh...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 186 - 194 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects. These edits are challenging, requiring a delicate balance between manipulating the viewer's attention while maintaining photo realism. While recent approaches can boast successful examples of attention attenuation or amplification, most of them also suffer from frequent unrealistic edits. We propose a realism loss for saliency-guided image enhancement to maintain high realism across varying image types, while attenuating distractors and amplifying objects of interest. Evaluations with professional photographers confirm that we achieve the dual objective of realism and effectiveness, and outperform the recent approaches on their own datasets, while requiring a smaller memory footprint and runtime. We thus offer a viable solution for automating image enhancement and photo cleanup operations. |
---|---|
AbstractList | Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects. These edits are challenging, requiring a delicate balance between manipulating the viewer's attention while maintaining photo realism. While recent approaches can boast successful examples of attention attenuation or amplification, most of them also suffer from frequent unrealistic edits. We propose a realism loss for saliency-guided image enhancement to maintain high realism across varying image types, while attenuating distractors and amplifying objects of interest. Evaluations with professional photographers confirm that we achieve the dual objective of realism and effectiveness, and outperform the recent approaches on their own datasets, while requiring a smaller memory footprint and runtime. We thus offer a viable solution for automating image enhancement and photo cleanup operations. |
Author | Bylinskii, Zoya Aksoy, Yagiz Miangoleh, S. Mahdi H. Shechtman, Eli Kee, Eric |
Author_xml | – sequence: 1 givenname: S. Mahdi H. surname: Miangoleh fullname: Miangoleh, S. Mahdi H. organization: Simon Fraser University – sequence: 2 givenname: Zoya surname: Bylinskii fullname: Bylinskii, Zoya organization: Adobe Research – sequence: 3 givenname: Eric surname: Kee fullname: Kee, Eric organization: Adobe Research – sequence: 4 givenname: Eli surname: Shechtman fullname: Shechtman, Eli organization: Adobe Research – sequence: 5 givenname: Yagiz surname: Aksoy fullname: Aksoy, Yagiz organization: Simon Fraser University |
BookMark | eNotjc1Kw0AURkdRsNa8QRfZS-K9cyeT3KWEWgsFpf5sy2RyoyPNKE1c9O0b0NV3FofzXauL-B1FqQVCjgh8V78_bwtdas41aMoBQNszlXDJFRVAgJqrczVDsJRZRr5SyTB8TRppRMvVTN1uxe3DMAafvkwg0R_T1W9opU3XvfuQdBk_XfTSSxxv1GXn9oMk_ztXbw_L1_ox2zyt1vX9JgsazJh5LoXJaOECjfFQddA2BbN1TiNTMV2XputKYo9eupYdepLGNyVJaw3SXC3-ukFEdj-H0LvDcYcw1Stj6QQFYESE |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52729.2023.00026 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798350301298 |
EISSN | 1063-6919 |
EndPage | 194 |
ExternalDocumentID | 10204846 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i204t-c97e9342e95144c08f0db5996aa2193521174ff739c1cefd9a1c3ebcb73ed6413 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:56:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-c97e9342e95144c08f0db5996aa2193521174ff739c1cefd9a1c3ebcb73ed6413 |
PageCount | 9 |
ParticipantIDs | ieee_primary_10204846 |
PublicationCentury | 2000 |
PublicationDate | 2023-June |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.372271 |
Snippet | Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 186 |
SubjectTerms | Attenuation Computational imaging Computer vision Image enhancement Memory management Pattern recognition Runtime |
Title | Realistic Saliency Guided Image Enhancement |
URI | https://ieeexplore.ieee.org/document/10204846 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YTpzGY4i3euCakr7S5jxtDCSmCRjabWocR0xAh6C98Otx2m4gJCRuUVXJjZLYn1N_nxm7ENqGCInkqbSWxzIXXEFuucg0RFkIYQKOjXw7keNZfDNP5i1ZvebCIGJdfIa-G9b_8s0KKndVRifcyczGssM6lLk1ZK3NhUpEqYxUWUuPC4S6HDxO75KQ0KPveoQ7pUInofCjiUodQ0Y9Nllbb0pHnv2q1D58_hJm_Pfn7bD-N13Pm24C0S7bwmKP9Vp86bWn92OfuYr5l1qY2bungSNdelfV0tBL16_kV7xh8eQ2gTPTZ7PR8GEw5m2zBL4kqyUHlaKK4hAJMsUxiMwKo532Sp6TUyKYFVDuYW0aKQgArVF5ABFq0GmERlIoO2DdYlXgIfMMKJtmxgJqSX4U8iQVGjHQUZITvlRHrO8mv3hr9DAW63kf__H8hG27BWgKrE5Zt3yv8IxCeanP6yX8AmAUnXA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8JAEJ4gHvSED4xve9Bja9_tHjwhCAqEKBhu2N3ORqIWIyVG_4t_xd_mbCloTDySeNs026Y7szvzdTvftwDHJpc2Cs_XA19K3fUjU2cikroZcuGEtrA9odjIrbZf77mXfa9fgI85FwYRs-IzNFQz-5cfj8REbZXRClcys66f11Be4dsrfaGNzxrn5M4T265Vu5W6nh8ioA-pc6oLFiBzXBsJSriuMENpxlxpkkQRLVaCHxZhcikDhwlLoIxZZAkHueCBg7FPIZ6euwTLBDQ8e0oPm2_hOHSvz8KckGeZ7LRy27n2bMKrhjqVXGkjKtGGH8e2ZFmrVoLP2XinxSoPxiTlhnj_JQX5bw2yBuVvQqLWmafadShgsgGlHEFreXwab4LiBDxm0tPaDTUUrVS7mAxj6tR4osipVZN7Nc3VsMrQW8iLb0ExGSW4DVosmAzCWArkPmUKEXmByREt7ngRIWi2A2Vl7MHzVPFjMLPz7h_Xj2Cl3m01B81G-2oPVpXzp-Vk-1BMXyZ4QMAl5YfZ9NHgbtHu-QLDUPq5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Realistic+Saliency+Guided+Image+Enhancement&rft.au=Miangoleh%2C+S.+Mahdi+H.&rft.au=Bylinskii%2C+Zoya&rft.au=Kee%2C+Eric&rft.au=Shechtman%2C+Eli&rft.date=2023-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=186&rft.epage=194&rft_id=info:doi/10.1109%2FCVPR52729.2023.00026&rft.externalDocID=10204846 |