Learning Robust Deep Visual Representations from EEG Brain Recordings

Decoding the human brain has been a hallmark of neuroscientists and Artificial Intelligence researchers alike. Reconstruction of visual images from brain Electroencephalography (EEG) signals has garnered a lot of interest due to its applications in brain-computer interfacing. This study proposes a t...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 7538 - 7547
Main Authors Singh, Prajwal, Dalal, Dwip, Vashishtha, Gautam, Miyapuram, Krishna, Raman, Shanmuganathan
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.01.2024
Subjects
Online AccessGet full text
ISSN2642-9381
DOI10.1109/WACV57701.2024.00738

Cover

Loading…
Abstract Decoding the human brain has been a hallmark of neuroscientists and Artificial Intelligence researchers alike. Reconstruction of visual images from brain Electroencephalography (EEG) signals has garnered a lot of interest due to its applications in brain-computer interfacing. This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations and subsequently utilize the learned representation for image generation and classification. We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures with supervised and contrastive learning methods. We have performed the zero-shot EEG classification task to support the generalizability claim further. We observed that a subject invariant linearly separable visual representation was learned using EEG data alone in an unimodal setting that gives better k-means accuracy as compared to a joint representation learning between EEG and images. Finally, we propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation, showcasing the potential for image reconstruction from EEG signals. Our proposed image synthesis method from EEG shows 62.9% and 36.13% inception score improvement on the EEGCVPR40 and the Thoughtviz datasets, which is better than state-of-the-art performance in GAN 1 .
AbstractList Decoding the human brain has been a hallmark of neuroscientists and Artificial Intelligence researchers alike. Reconstruction of visual images from brain Electroencephalography (EEG) signals has garnered a lot of interest due to its applications in brain-computer interfacing. This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations and subsequently utilize the learned representation for image generation and classification. We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures with supervised and contrastive learning methods. We have performed the zero-shot EEG classification task to support the generalizability claim further. We observed that a subject invariant linearly separable visual representation was learned using EEG data alone in an unimodal setting that gives better k-means accuracy as compared to a joint representation learning between EEG and images. Finally, we propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation, showcasing the potential for image reconstruction from EEG signals. Our proposed image synthesis method from EEG shows 62.9% and 36.13% inception score improvement on the EEGCVPR40 and the Thoughtviz datasets, which is better than state-of-the-art performance in GAN 1 .
Author Singh, Prajwal
Raman, Shanmuganathan
Vashishtha, Gautam
Dalal, Dwip
Miyapuram, Krishna
Author_xml – sequence: 1
  givenname: Prajwal
  surname: Singh
  fullname: Singh, Prajwal
  email: singh_prajwal@iitgn.ac.in
  organization: IIT,CVIG Lab,Gandhinagar,India
– sequence: 2
  givenname: Dwip
  surname: Dalal
  fullname: Dalal, Dwip
  email: dwip.dalal@iitgn.ac.in
  organization: IIT,CVIG Lab,Gandhinagar,India
– sequence: 3
  givenname: Gautam
  surname: Vashishtha
  fullname: Vashishtha, Gautam
  email: gautam.pv@iitgn.ac.in
  organization: IIT,CVIG Lab,Gandhinagar,India
– sequence: 4
  givenname: Krishna
  surname: Miyapuram
  fullname: Miyapuram, Krishna
  email: kprasad@iitgn.ac.in
  organization: IIT,BRAIN Lab,Gandhinagar,India
– sequence: 5
  givenname: Shanmuganathan
  surname: Raman
  fullname: Raman, Shanmuganathan
  email: shanmuga@iitgn.ac.in
  organization: IIT,CVIG Lab,Gandhinagar,India
BookMark eNotjMtOAjEUQKvRRED-gEV_YLC3t88l4ogmk5gQxSVp4Y6pgRnSDgv_XhJdncXJOWN20_UdMTYDMQcQ_uFzsdxoawXMpZBqLoRFd8Wm3nqHWiA4L8U1G0mjZOXRwR0bl_ItBHrwOGJ1QyF3qfvi6z6ey8CfiE58k8o5HPiaTpkKdUMYUt8V3ub-yOt6xR9zSN1F7_q8v7Tlnt224VBo-s8J-3iu35cvVfO2el0umipJoYZqByZIjdEoDFqDs8H6qJyKUYPCaE10O_TWofHOkUSg1ntpQbdmL8m0OGGzv28iou0pp2PIP1sQlwcYgb_uwExt
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV57701.2024.00738
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350318920
EISSN 2642-9381
EndPage 7547
ExternalDocumentID 10484160
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-c16a253b643a55187a79b484bb5143b76b8c397836988e231ef992715f6d2e6f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:11:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-c16a253b643a55187a79b484bb5143b76b8c397836988e231ef992715f6d2e6f3
PageCount 10
ParticipantIDs ieee_primary_10484160
PublicationCentury 2000
PublicationDate 2024-Jan.-3
PublicationDateYYYYMMDD 2024-01-03
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-3
  day: 03
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.264044
Snippet Decoding the human brain has been a hallmark of neuroscientists and Artificial Intelligence researchers alike. Reconstruction of visual images from brain...
SourceID ieee
SourceType Publisher
StartPage 7538
SubjectTerms Applications
Biomedical / healthcare / medicine
Electroencephalography
Feature extraction
Image synthesis
Representation learning
Self-supervised learning
Transforms
Visualization
Title Learning Robust Deep Visual Representations from EEG Brain Recordings
URI https://ieeexplore.ieee.org/document/10484160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagE1N5FPGWB9aUPO14hJJSIVGhipZule1cUAVKK5Is_HrOjgsICYnNymLLp8t93_m-O0Iu0WMSH5RG5JYiQRGKe1JD4cVob50LiAM7JeJhzEbT-H6ezJ1Y3WphAMAWn0HfLO1bfr7SjUmVoYfH5pUMGfo2MrdWrLX57UYCoYjTxgW-uHq-HswSzn3DAUPbIdtIUH5MULEBZNgl483Wbd3Ia7-pVV9__OrK-O-z7ZLet1aPPn5FoT2yBeU-6TpwSZ3rVgckc51UX-hkpZqqprcAazpbVo18oxNbD-tkSGVFjeiEZtkdvTETJGjLUU1OvUemw-xpMPLcDAVvGfpx7emAyTCJFAIPaZqvccmFwpMqZZCS4kylOrJSDpGmgGAPCiFCHiQFy0NgRXRIOuWqhCNC85AVLFAFIhwWS4nYIU6U5kwz4BKB0DHpmWtZrNs2GYvNjZz88f2U7BjT2HxGdEY69XsD5xjha3VhLfsJZHmkbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWAqjyLeeGBNydOORygpBdoKVW3pVtnOBVWgtCLJwq_HdlxASEhsVhZbPl3uu_N93yF0qTwmckFIhdxilaAwQR0uIXNCZW-ZMgg9MyViMCS9Sfgwi2aWrG64MABgms-grZfmLT9dykqXypSHh_qVTGXomyrwR15N11r_eAOmwIhlx3kuu3q-7kwjSl2dBfpGI1uTUH7MUDEhpNtEw_XmdefIa7sqRVt-_NJl_PfpdlDrm62Hn77i0C7agHwPNS28xNZ5i32UWC3VFzxaiqoo8S3ACk8XRcXf8Mh0xFoiUl5gTTvBSXKHb_QMCVxnqbqq3kKTbjLu9Bw7RcFZ-G5YOtIj3I8CoaAH1_JrlFMm1EmF0FhJUCJiGRgyB4tjUHAPMsZ86kUZSX0gWXCAGvkyh0OEU59kxBOZwjgk5FyhhzASkhJJgHIFhY5QS1_LfFULZczXN3L8x_cLtNUbD_rz_v3w8QRtazOZ6kZwihrlewVnKt6X4txY-RMsnKe3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=Learning+Robust+Deep+Visual+Representations+from+EEG+Brain+Recordings&rft.au=Singh%2C+Prajwal&rft.au=Dalal%2C+Dwip&rft.au=Vashishtha%2C+Gautam&rft.au=Miyapuram%2C+Krishna&rft.date=2024-01-03&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=7538&rft.epage=7547&rft_id=info:doi/10.1109%2FWACV57701.2024.00738&rft.externalDocID=10484160