Federated Linear Mixed Effects Modeling for Voxel-Based Morphometry

We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and mem...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4
Main Authors Basodi, Sunitha, Raja, Rajikha, Gazula, Harshvardhan, Romero, Javier Tomas, Panta, Sandeep, Calhoun, Vince D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. Our decentralized LME approach is optimized for neuroimaging data. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results demonstrate that federated (decentralized) LME models achieve similar performance compared to the models trained with all the data in one location.
AbstractList We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. Our decentralized LME approach is optimized for neuroimaging data. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results demonstrate that federated (decentralized) LME models achieve similar performance compared to the models trained with all the data in one location.
Author Romero, Javier Tomas
Panta, Sandeep
Gazula, Harshvardhan
Basodi, Sunitha
Raja, Rajikha
Calhoun, Vince D.
Author_xml – sequence: 1
  givenname: Sunitha
  surname: Basodi
  fullname: Basodi, Sunitha
  organization: Georgia State University,TReNDS Center,Atlanta,GA,USA
– sequence: 2
  givenname: Rajikha
  surname: Raja
  fullname: Raja, Rajikha
  organization: University of Arkansas for Medical Sciences,Department of Radiology,Little Rock,AR,USA
– sequence: 3
  givenname: Harshvardhan
  surname: Gazula
  fullname: Gazula, Harshvardhan
  organization: Harvard Medical School,Boston,MA,USA
– sequence: 4
  givenname: Javier Tomas
  surname: Romero
  fullname: Romero, Javier Tomas
  organization: Georgia State University,TReNDS Center,Atlanta,GA,USA
– sequence: 5
  givenname: Sandeep
  surname: Panta
  fullname: Panta, Sandeep
  organization: Georgia State University,TReNDS Center,Atlanta,GA,USA
– sequence: 6
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Georgia State University,TReNDS Center,Atlanta,GA,USA
BookMark eNo1T81OwzAYCwgkxugbINEXaMl_0iOrNqjUigM_1yltvkDQ1kxpD9vbLxLggy1LlmXfoqsxjIDQA8ElIbh6bN5WjWBKq5JiykqSCEvNL1BWKU2kFFwxodklWpCKi0JzQW9QNk0_OEFxzjBfoHoDFqKZweatH8HEvPPHZNbOwTBPeRcs7Pz4lbsQ889whF2xMlMKdCEevsMe5ni6Q9fO7CbI_nSJPjbr9_qlaF-fm_qpLTzFfC6MSqMsNhJsz1VFeyOFAUsNB-3ogCUdKAMhnAJJNVPACUioFAfSs_SFLdH9b68HgO0h-r2Jp-3_b3YG2JNN5g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI53787.2023.10230684
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665473583
1665473584
EISSN 1945-8452
EndPage 4
ExternalDocumentID 10230684
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-a7166d0a6edb4792ba65aed2a4e8f2c062c23e55f7e62837e41e6e974e1b34733
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:17 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-a7166d0a6edb4792ba65aed2a4e8f2c062c23e55f7e62837e41e6e974e1b34733
PageCount 4
ParticipantIDs ieee_primary_10230684
PublicationCentury 2000
PublicationDate 2023-April-18
PublicationDateYYYYMMDD 2023-04-18
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April-18
  day: 18
PublicationDecade 2020
PublicationTitle 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
PublicationTitleAbbrev ISBI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.264181
Snippet We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Biological system modeling
COINSTAC
Collaboration
Data privacy
Federated learning
Linear mixed-effects (LME)
Magnetic resonance imaging
Memory management
Neuroimaging
Title Federated Linear Mixed Effects Modeling for Voxel-Based Morphometry
URI https://ieeexplore.ieee.org/document/10230684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ribeKdPPiaLk3TtHndcExhQ9DJ3kbSnMJQV5kdTH-9J-02LyD41jQNhJyU75zkfN8h5MrIlCvLc6a0NkxqAUx7wUtlrDCIb0Klnu88GKr-SN6O4_GKrF5xYQCgSj6DwD9Wd_muyBb-qKwdVg5zKhukkWhdk7U2ByqIhRJj81UOV8h1--a-cxNHuCMDXyM8WI_-UUelgpHeLhmuJ1BnjzwFi9IG2ccvbcZ_z3CPtL4Ye_Rug0X7ZAtmB2Tnm9jgIen2vG4EupaOYgCKG5wOpkts1PrFb9RXRfPcdIpuLH0slvDMOghxDjvQFsULlPP3Fhn1rh-6fbYqocCmgsuSGQyHlONGgbMy0cIaFRtwwkhIc5FxJTIRQRznCSivgwMyBAUYY0BoI5lE0RFpzooZHBOagXL4c_PI5E6KxBn80mRKGOHQS8vzE9Ly6zF5rVUyJuulOP3j_RnZ9mbxNzNhek6a5XwBFwjwpb2sDPsJGmKj_g
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8oPqgvfmH8tg--bmxd122vEAkoEBPB8Ea69ZYQlBkcCfrXe90APxIT39Z1TZpel99de7_fAdwoEToydlJLRpGyRMTRiozgpVQxV4RvXIaG79ztydZA3A394ZKsXnBhELFIPkPbPBZ3-TpL5uaorOYWDnMoNmHLN45FSddaH6kQGgqKzpdZXK4T1dqP9bbv0Z60TZVwezX-RyWVAkiae9BbTaHMH5nY8zy2k49f6oz_nuM-VL84e-xhjUYHsIHTQ9j9Jjd4BI2mUY4g51IzCkFpi7PueEGNUsH4jZm6aIadzsiRZU_ZAp-tOoGcpg6yRvaC-ey9CoPmbb_RspZFFKwxd0RuKQqIpHaURB2LIOKxkr5CzZXAMOWJI3nCPfT9NEBplHBQuCiRogx0Y08EnncMlWk2xRNgCUpNv7fjqVQLHmhFX6pEcsU1-WlpegpVsx6j11InY7RairM_3l_Ddqvf7Yw67d79OewYE5l7Gje8gEo-m-MlwX0eXxVG_gTiPKdL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+20th+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Federated+Linear+Mixed+Effects+Modeling+for+Voxel-Based+Morphometry&rft.au=Basodi%2C+Sunitha&rft.au=Raja%2C+Rajikha&rft.au=Gazula%2C+Harshvardhan&rft.au=Romero%2C+Javier+Tomas&rft.date=2023-04-18&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI53787.2023.10230684&rft.externalDocID=10230684