Federated Linear Mixed Effects Modeling for Voxel-Based Morphometry
We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and mem...
Saved in:
Published in | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) pp. 1 - 4 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. Our decentralized LME approach is optimized for neuroimaging data. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results demonstrate that federated (decentralized) LME models achieve similar performance compared to the models trained with all the data in one location. |
---|---|
AbstractList | We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. Our decentralized LME approach is optimized for neuroimaging data. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results demonstrate that federated (decentralized) LME models achieve similar performance compared to the models trained with all the data in one location. |
Author | Romero, Javier Tomas Panta, Sandeep Gazula, Harshvardhan Basodi, Sunitha Raja, Rajikha Calhoun, Vince D. |
Author_xml | – sequence: 1 givenname: Sunitha surname: Basodi fullname: Basodi, Sunitha organization: Georgia State University,TReNDS Center,Atlanta,GA,USA – sequence: 2 givenname: Rajikha surname: Raja fullname: Raja, Rajikha organization: University of Arkansas for Medical Sciences,Department of Radiology,Little Rock,AR,USA – sequence: 3 givenname: Harshvardhan surname: Gazula fullname: Gazula, Harshvardhan organization: Harvard Medical School,Boston,MA,USA – sequence: 4 givenname: Javier Tomas surname: Romero fullname: Romero, Javier Tomas organization: Georgia State University,TReNDS Center,Atlanta,GA,USA – sequence: 5 givenname: Sandeep surname: Panta fullname: Panta, Sandeep organization: Georgia State University,TReNDS Center,Atlanta,GA,USA – sequence: 6 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Georgia State University,TReNDS Center,Atlanta,GA,USA |
BookMark | eNo1T81OwzAYCwgkxugbINEXaMl_0iOrNqjUigM_1yltvkDQ1kxpD9vbLxLggy1LlmXfoqsxjIDQA8ElIbh6bN5WjWBKq5JiykqSCEvNL1BWKU2kFFwxodklWpCKi0JzQW9QNk0_OEFxzjBfoHoDFqKZweatH8HEvPPHZNbOwTBPeRcs7Pz4lbsQ889whF2xMlMKdCEevsMe5ni6Q9fO7CbI_nSJPjbr9_qlaF-fm_qpLTzFfC6MSqMsNhJsz1VFeyOFAUsNB-3ogCUdKAMhnAJJNVPACUioFAfSs_SFLdH9b68HgO0h-r2Jp-3_b3YG2JNN5g |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI53787.2023.10230684 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665473583 1665473584 |
EISSN | 1945-8452 |
EndPage | 4 |
ExternalDocumentID | 10230684 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i204t-a7166d0a6edb4792ba65aed2a4e8f2c062c23e55f7e62837e41e6e974e1b34733 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:17 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-a7166d0a6edb4792ba65aed2a4e8f2c062c23e55f7e62837e41e6e974e1b34733 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10230684 |
PublicationCentury | 2000 |
PublicationDate | 2023-April-18 |
PublicationDateYYYYMMDD | 2023-04-18 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-April-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.264181 |
Snippet | We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Analytical models Biological system modeling COINSTAC Collaboration Data privacy Federated learning Linear mixed-effects (LME) Magnetic resonance imaging Memory management Neuroimaging |
Title | Federated Linear Mixed Effects Modeling for Voxel-Based Morphometry |
URI | https://ieeexplore.ieee.org/document/10230684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ribeKdPPiaLk3TtHndcExhQ9DJ3kbSnMJQV5kdTH-9J-02LyD41jQNhJyU75zkfN8h5MrIlCvLc6a0NkxqAUx7wUtlrDCIb0Klnu88GKr-SN6O4_GKrF5xYQCgSj6DwD9Wd_muyBb-qKwdVg5zKhukkWhdk7U2ByqIhRJj81UOV8h1--a-cxNHuCMDXyM8WI_-UUelgpHeLhmuJ1BnjzwFi9IG2ccvbcZ_z3CPtL4Ye_Rug0X7ZAtmB2Tnm9jgIen2vG4EupaOYgCKG5wOpkts1PrFb9RXRfPcdIpuLH0slvDMOghxDjvQFsULlPP3Fhn1rh-6fbYqocCmgsuSGQyHlONGgbMy0cIaFRtwwkhIc5FxJTIRQRznCSivgwMyBAUYY0BoI5lE0RFpzooZHBOagXL4c_PI5E6KxBn80mRKGOHQS8vzE9Ly6zF5rVUyJuulOP3j_RnZ9mbxNzNhek6a5XwBFwjwpb2sDPsJGmKj_g |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8oPqgvfmH8tg--bmxd122vEAkoEBPB8Ea69ZYQlBkcCfrXe90APxIT39Z1TZpel99de7_fAdwoEToydlJLRpGyRMTRiozgpVQxV4RvXIaG79ztydZA3A394ZKsXnBhELFIPkPbPBZ3-TpL5uaorOYWDnMoNmHLN45FSddaH6kQGgqKzpdZXK4T1dqP9bbv0Z60TZVwezX-RyWVAkiae9BbTaHMH5nY8zy2k49f6oz_nuM-VL84e-xhjUYHsIHTQ9j9Jjd4BI2mUY4g51IzCkFpi7PueEGNUsH4jZm6aIadzsiRZU_ZAp-tOoGcpg6yRvaC-ey9CoPmbb_RspZFFKwxd0RuKQqIpHaURB2LIOKxkr5CzZXAMOWJI3nCPfT9NEBplHBQuCiRogx0Y08EnncMlWk2xRNgCUpNv7fjqVQLHmhFX6pEcsU1-WlpegpVsx6j11InY7RairM_3l_Ddqvf7Yw67d79OewYE5l7Gje8gEo-m-MlwX0eXxVG_gTiPKdL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+20th+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Federated+Linear+Mixed+Effects+Modeling+for+Voxel-Based+Morphometry&rft.au=Basodi%2C+Sunitha&rft.au=Raja%2C+Rajikha&rft.au=Gazula%2C+Harshvardhan&rft.au=Romero%2C+Javier+Tomas&rft.date=2023-04-18&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISBI53787.2023.10230684&rft.externalDocID=10230684 |