Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem
The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recent...
Saved in:
Published in | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 930 - 937 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
04.12.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SSCI51031.2022.10022156 |
Cover
Loading…
Abstract | The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recently proposed a hybrid approach to the one dimensional BPP in which a quantum annealing subroutine is employed to sample feasible solutions for single containers. From this reduced search space, a classical optimization subroutine can find the solution to the problem. With the aim of going a step further in the evaluation of our subroutine, in this paper we compare the performance of our procedure with other classical approaches. Concretely we test a random sampling and a random-walk-based heuristic. Employing a benchmark comprising 18 instances, we show that the quantum approach lacks the stagnation behaviour that slows down the classical algorithms. Based on this, we conclude that the quantum strategy can be employed jointly with the random walk to obtain a full sample of feasible solutions in fewer iterations. This work improves our intuition about the benefits of employing the scarce quantum resources to improve the results of a diminishingly efficient classical strategy. |
---|---|
AbstractList | The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recently proposed a hybrid approach to the one dimensional BPP in which a quantum annealing subroutine is employed to sample feasible solutions for single containers. From this reduced search space, a classical optimization subroutine can find the solution to the problem. With the aim of going a step further in the evaluation of our subroutine, in this paper we compare the performance of our procedure with other classical approaches. Concretely we test a random sampling and a random-walk-based heuristic. Employing a benchmark comprising 18 instances, we show that the quantum approach lacks the stagnation behaviour that slows down the classical algorithms. Based on this, we conclude that the quantum strategy can be employed jointly with the random walk to obtain a full sample of feasible solutions in fewer iterations. This work improves our intuition about the benefits of employing the scarce quantum resources to improve the results of a diminishingly efficient classical strategy. |
Author | Osaba, Eneko Villar-Rodriguez, Esther Sanz, Mikel Oregi, Izaskun De Andoin, Mikel Garcia |
Author_xml | – sequence: 1 givenname: Mikel Garcia surname: De Andoin fullname: De Andoin, Mikel Garcia email: mikel.garciadeandoin@ehu.eus organization: University of the Basque Country UPV/EHU,Department of Physical Chemistry,Leioa,Spain,48940 – sequence: 2 givenname: Izaskun surname: Oregi fullname: Oregi, Izaskun organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160 – sequence: 3 givenname: Esther surname: Villar-Rodriguez fullname: Villar-Rodriguez, Esther organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160 – sequence: 4 givenname: Eneko surname: Osaba fullname: Osaba, Eneko organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160 – sequence: 5 givenname: Mikel surname: Sanz fullname: Sanz, Mikel email: mikel.sanz@ehu.eus organization: University of the Basque Country UPV/EHU,Department of Physical Chemistry,Leioa,Spain,48940 |
BookMark | eNo1j8tKAzEYhSPoQmvfQDAvMGOuk2RZB7WFgpXquvyTSye0k5Q4FXx7B9TNOZuPw3du0GXKySN0T0lNKTEP2227kpRwWjPCWE3JlFQ2F2hulKZNI4VWjTbXaNnm4QQFxvjl8aNPth-gHHAOGPDbGdJ4HvDiuM8ljv2AQy547CcwJrwBe4hpjzcld0c_3KKrAMdPP__rGfp4fnpvl9X69WXVLtZVZESMldHCgHXCc-4I51p2xlrNrHNOBBM6IaCRjitBDQ9OKCM6ywkQDpIpZQOfobvf3ei9351KnHy_d_8H-Q_JJkpu |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SSCI51031.2022.10022156 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665487689 1665487682 |
EndPage | 937 |
ExternalDocumentID | 10022156 |
Genre | orig-research |
GrantInformation_xml | – fundername: EU grantid: 828826,899368 funderid: 10.13039/100016077 – fundername: ERDF grantid: 820505,820363 funderid: 10.13039/501100008530 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i204t-9849acd4e33d03385b9cc82cddd4f9fb44a65d374193fd4794bc30a03a5277cf3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:52 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-9849acd4e33d03385b9cc82cddd4f9fb44a65d374193fd4794bc30a03a5277cf3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10022156 |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec.-4 |
PublicationDateYYYYMMDD | 2022-12-04 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE Symposium Series on Computational Intelligence (SSCI) |
PublicationTitleAbbrev | SSCI |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8869427 |
Snippet | The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 930 |
SubjectTerms | Algorithms Annealing Benchmark testing Bin Packing Problem Combinatorial optimization Heuristic algorithms Measurement Quantum algorithm Quantum annealing Quantum computation |
Title | Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem |
URI | https://ieeexplore.ieee.org/document/10022156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9fdbpPJbnK0xVIFS6UWeit52lK7K2X34q832bYWBcFbCCEJM4GZbzLzDUJ3XAJzTNDIYwEaAXFJxLn0KIUokBlTHnSF0MDzMB1M4GnKptti9boWxlpbJ5_ZOAzrv3xT6CqEytqBLtSbqLSBGv6dbYq1tjlbnUS0x-PeYyCIC7CPkHi3-kfflNps9I_QcHfgJltkGVelivXnLy7Gf9_oGLX2FXp49G17TtCBzU_RoLen8sZdv2a-kuslLhyW-KXyIqxW-P79rVgvyvkKe28Ve-8Pdxc5HkkdQuZhy9BepoUm_YfX3iDadkqIFiSBMhIchNQGLKUm8aCTKaE1J9oYA044BSBTZqj3HgR1JpDKK00TmVDJSJZpR89QMy9ye45wSoEA7zhnmEcaJuWBDsdBam2mJDfyArWCGGYfGzKM2U4Cl3_MX6HDoI06AwSuUbNcV_bG2_FS3db6-wIzBZy- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3pSI8a3PXjdZeljt3sUIlkUCAZIuJE-ZYPsGrJ78dfbLiDRxMRb0zRtMz18801nvgHggXFCDY2xZ7kA9ggygccYtywFCcIjKizpcqGB_iBMJuR5SqebYvWqFkZrXSWfad8Nq798lcvShcoaTi7UQlS4Dw4s8BO6LtfaZG01g7gxGrW7TiLOET-E_O36H51TKuDoHIPB9sh1vsjCLwvhy89faoz_vtMJqO9q9ODwG31OwZ7OzkDS3ol5w5ZdM1_y1QLmBnL4Wlojlkv4-P6Wr9JivoTWX4XW_4OtNINDLl3Q3G3pGszUwaTzNG4n3qZXgpeigBRezEjMpSIaYxVY2klFLCVDUilFTGwEITykClv_IcZGOVl5IXHAA8wpiiJp8DmoZXmmLwAMMUGENY1R1HINFTIniGNIqHUkOFP8EtSdGWYfazmM2dYCV3_M34PDZNzvzXrdwcs1OHIvU-WDkBtQK1alvrWoXoi76i2_AJnQoAs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Comparative+Benchmark+of+a+Quantum+Algorithm+for+the+Bin+Packing+Problem&rft.au=De+Andoin%2C+Mikel+Garcia&rft.au=Oregi%2C+Izaskun&rft.au=Villar-Rodriguez%2C+Esther&rft.au=Osaba%2C+Eneko&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=930&rft.epage=937&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022156&rft.externalDocID=10022156 |