Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem

The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recent...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 930 - 937
Main Authors De Andoin, Mikel Garcia, Oregi, Izaskun, Villar-Rodriguez, Esther, Osaba, Eneko, Sanz, Mikel
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022156

Cover

Loading…
Abstract The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recently proposed a hybrid approach to the one dimensional BPP in which a quantum annealing subroutine is employed to sample feasible solutions for single containers. From this reduced search space, a classical optimization subroutine can find the solution to the problem. With the aim of going a step further in the evaluation of our subroutine, in this paper we compare the performance of our procedure with other classical approaches. Concretely we test a random sampling and a random-walk-based heuristic. Employing a benchmark comprising 18 instances, we show that the quantum approach lacks the stagnation behaviour that slows down the classical algorithms. Based on this, we conclude that the quantum strategy can be employed jointly with the random walk to obtain a full sample of feasible solutions in fewer iterations. This work improves our intuition about the benefits of employing the scarce quantum resources to improve the results of a diminishingly efficient classical strategy.
AbstractList The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are expected to show an advantage over their classical counterparts in obtaining approximate solutions for optimization problems. We have recently proposed a hybrid approach to the one dimensional BPP in which a quantum annealing subroutine is employed to sample feasible solutions for single containers. From this reduced search space, a classical optimization subroutine can find the solution to the problem. With the aim of going a step further in the evaluation of our subroutine, in this paper we compare the performance of our procedure with other classical approaches. Concretely we test a random sampling and a random-walk-based heuristic. Employing a benchmark comprising 18 instances, we show that the quantum approach lacks the stagnation behaviour that slows down the classical algorithms. Based on this, we conclude that the quantum strategy can be employed jointly with the random walk to obtain a full sample of feasible solutions in fewer iterations. This work improves our intuition about the benefits of employing the scarce quantum resources to improve the results of a diminishingly efficient classical strategy.
Author Osaba, Eneko
Villar-Rodriguez, Esther
Sanz, Mikel
Oregi, Izaskun
De Andoin, Mikel Garcia
Author_xml – sequence: 1
  givenname: Mikel Garcia
  surname: De Andoin
  fullname: De Andoin, Mikel Garcia
  email: mikel.garciadeandoin@ehu.eus
  organization: University of the Basque Country UPV/EHU,Department of Physical Chemistry,Leioa,Spain,48940
– sequence: 2
  givenname: Izaskun
  surname: Oregi
  fullname: Oregi, Izaskun
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160
– sequence: 3
  givenname: Esther
  surname: Villar-Rodriguez
  fullname: Villar-Rodriguez, Esther
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160
– sequence: 4
  givenname: Eneko
  surname: Osaba
  fullname: Osaba, Eneko
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA),Derio,Spain,48160
– sequence: 5
  givenname: Mikel
  surname: Sanz
  fullname: Sanz, Mikel
  email: mikel.sanz@ehu.eus
  organization: University of the Basque Country UPV/EHU,Department of Physical Chemistry,Leioa,Spain,48940
BookMark eNo1j8tKAzEYhSPoQmvfQDAvMGOuk2RZB7WFgpXquvyTSye0k5Q4FXx7B9TNOZuPw3du0GXKySN0T0lNKTEP2227kpRwWjPCWE3JlFQ2F2hulKZNI4VWjTbXaNnm4QQFxvjl8aNPth-gHHAOGPDbGdJ4HvDiuM8ljv2AQy547CcwJrwBe4hpjzcld0c_3KKrAMdPP__rGfp4fnpvl9X69WXVLtZVZESMldHCgHXCc-4I51p2xlrNrHNOBBM6IaCRjitBDQ9OKCM6ywkQDpIpZQOfobvf3ei9351KnHy_d_8H-Q_JJkpu
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022156
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 937
ExternalDocumentID 10022156
Genre orig-research
GrantInformation_xml – fundername: EU
  grantid: 828826,899368
  funderid: 10.13039/100016077
– fundername: ERDF
  grantid: 820505,820363
  funderid: 10.13039/501100008530
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-9849acd4e33d03385b9cc82cddd4f9fb44a65d374193fd4794bc30a03a5277cf3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-9849acd4e33d03385b9cc82cddd4f9fb44a65d374193fd4794bc30a03a5277cf3
PageCount 8
ParticipantIDs ieee_primary_10022156
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8869427
Snippet The Bin Packing Problem (BPP) stands out as a paradigmatic combinatorial optimization problem in logistics. Quantum and hybrid quantum-classical algorithms are...
SourceID ieee
SourceType Publisher
StartPage 930
SubjectTerms Algorithms
Annealing
Benchmark testing
Bin Packing Problem
Combinatorial optimization
Heuristic algorithms
Measurement
Quantum algorithm
Quantum annealing
Quantum computation
Title Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem
URI https://ieeexplore.ieee.org/document/10022156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9fdbpPJbnK0xVIFS6UWeit52lK7K2X34q832bYWBcFbCCEJM4GZbzLzDUJ3XAJzTNDIYwEaAXFJxLn0KIUokBlTHnSF0MDzMB1M4GnKptti9boWxlpbJ5_ZOAzrv3xT6CqEytqBLtSbqLSBGv6dbYq1tjlbnUS0x-PeYyCIC7CPkHi3-kfflNps9I_QcHfgJltkGVelivXnLy7Gf9_oGLX2FXp49G17TtCBzU_RoLen8sZdv2a-kuslLhyW-KXyIqxW-P79rVgvyvkKe28Ve-8Pdxc5HkkdQuZhy9BepoUm_YfX3iDadkqIFiSBMhIchNQGLKUm8aCTKaE1J9oYA044BSBTZqj3HgR1JpDKK00TmVDJSJZpR89QMy9ye45wSoEA7zhnmEcaJuWBDsdBam2mJDfyArWCGGYfGzKM2U4Cl3_MX6HDoI06AwSuUbNcV_bG2_FS3db6-wIzBZy-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD3pSI8a3PXjdZeljt3sUIlkUCAZIuJE-ZYPsGrJ78dfbLiDRxMRb0zRtMz18801nvgHggXFCDY2xZ7kA9ggygccYtywFCcIjKizpcqGB_iBMJuR5SqebYvWqFkZrXSWfad8Nq798lcvShcoaTi7UQlS4Dw4s8BO6LtfaZG01g7gxGrW7TiLOET-E_O36H51TKuDoHIPB9sh1vsjCLwvhy89faoz_vtMJqO9q9ODwG31OwZ7OzkDS3ol5w5ZdM1_y1QLmBnL4Wlojlkv4-P6Wr9JivoTWX4XW_4OtNINDLl3Q3G3pGszUwaTzNG4n3qZXgpeigBRezEjMpSIaYxVY2klFLCVDUilFTGwEITykClv_IcZGOVl5IXHAA8wpiiJp8DmoZXmmLwAMMUGENY1R1HINFTIniGNIqHUkOFP8EtSdGWYfazmM2dYCV3_M34PDZNzvzXrdwcs1OHIvU-WDkBtQK1alvrWoXoi76i2_AJnQoAs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Comparative+Benchmark+of+a+Quantum+Algorithm+for+the+Bin+Packing+Problem&rft.au=De+Andoin%2C+Mikel+Garcia&rft.au=Oregi%2C+Izaskun&rft.au=Villar-Rodriguez%2C+Esther&rft.au=Osaba%2C+Eneko&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=930&rft.epage=937&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022156&rft.externalDocID=10022156