From RGB images to Dynamic Movement Primitives for planar tasks
DMP have been extensively applied in various robotic tasks thanks to their generalization and robustness properties. However, the successful execution of a given task may necessitate the use of different motion patterns that take into account not only the initial and target position but also feature...
Saved in:
Published in | 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids) pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
12.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DMP have been extensively applied in various robotic tasks thanks to their generalization and robustness properties. However, the successful execution of a given task may necessitate the use of different motion patterns that take into account not only the initial and target position but also features relating to the overall structure and layout of the scene. To make DMP applicable to a wider range of tasks and further automate their use, we design a framework combining deep residual networks with DMP, that can encapsulate different motion patterns of a planar task, provided through human demonstrations on the RGB image plane. We can then automatically infer from new raw RGB visual input the appropriate DMP parameters, i.e. the weights that determine the motion pattern and the initial/target positions. We compare our method against another SoA method for inferring DMP from images and carry out experimental validations in two different planar tasks. |
---|---|
AbstractList | DMP have been extensively applied in various robotic tasks thanks to their generalization and robustness properties. However, the successful execution of a given task may necessitate the use of different motion patterns that take into account not only the initial and target position but also features relating to the overall structure and layout of the scene. To make DMP applicable to a wider range of tasks and further automate their use, we design a framework combining deep residual networks with DMP, that can encapsulate different motion patterns of a planar task, provided through human demonstrations on the RGB image plane. We can then automatically infer from new raw RGB visual input the appropriate DMP parameters, i.e. the weights that determine the motion pattern and the initial/target positions. We compare our method against another SoA method for inferring DMP from images and carry out experimental validations in two different planar tasks. |
Author | Sidiropoulos, Antonis Doulgeri, Zoe |
Author_xml | – sequence: 1 givenname: Antonis surname: Sidiropoulos fullname: Sidiropoulos, Antonis email: antosidi@ece.auth.gr organization: Aristotle University of Thessaloniki,Automation & Robotics Lab,Dept. of Electrical & Computer Engineering,Greece – sequence: 2 givenname: Zoe surname: Doulgeri fullname: Doulgeri, Zoe email: doulgeri@ece.auth.gr organization: Aristotle University of Thessaloniki,Automation & Robotics Lab,Dept. of Electrical & Computer Engineering,Greece |
BookMark | eNo1j0FLwzAYhqMoOGf_gYccvLZ-SZp-yUl0uk2YKKLnkTZfJLq2o6mD_XsH6uk9PPDwvOfspOs7YuxKQCEE2Ovld-u6PvqkUQAUEqQqBCjUUuARyyxaozQoUBLNMZtIUZU5aANnLEvpEwCUMMbKasJu5kPf8tfFHY-t-6DEx57f7zvXxoY_9TtqqRv5yxDbOMbdAYd-4NuN69zAR5e-0gU7DW6TKPvbKXufP7zNlvnqefE4u13lUUI55lYrCiCkx1o1deVBaPCNU1aGukavIBgq0QuiUEETyJDFQz6SE-hQopqyy19vJKL19hDkhv36_7P6AQakT0E |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/Humanoids57100.2023.10375217 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350303278 |
EISSN | 2164-0580 |
EndPage | 8 |
ExternalDocumentID | 10375217 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS CBEJK CHZPO IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i204t-953ef012d7b3cb6d0150dca392fbb7d30f8e47d1eef60cfe8e973037ea17a7273 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:23:51 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-953ef012d7b3cb6d0150dca392fbb7d30f8e47d1eef60cfe8e973037ea17a7273 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10375217 |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec.-12 |
PublicationDateYYYYMMDD | 2023-12-12 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids) |
PublicationTitleAbbrev | HUMANOIDS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188926 |
Score | 1.913984 |
Snippet | DMP have been extensively applied in various robotic tasks thanks to their generalization and robustness properties. However, the successful execution of a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Dynamics Humanoid robots Layout Pipelines Robustness Task analysis Visualization |
Title | From RGB images to Dynamic Movement Primitives for planar tasks |
URI | https://ieeexplore.ieee.org/document/10375217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JawIxFH5UD6W9dLN0JwevM2YWk5lToYuVQqWUCt4kywuIdUZ0vPTXN8loNyj0FnIIIdv38t77vgfQ5qlgGY9ZwFzgMOU8D6zdjAHNpFIJFYZKnyA7YP1h-jjqjtZkdc-FQUSffIaha_pYvi7VyrnKOo7TZuGGN6DB87wma306VOzhzPKYbUN7raPZ8W7wcqIt9kSUhq5QeLgZ4kcxFY8lvT0YbGZRp5BMw1UlQ_X-S6Dx39Pch9YXbY88fwLSAWxhcQi73xQHj-C6tyhn5OXhhkxm9iVZkqokd3VRevJUeu3wyo7hWE9Oj5ZYk5bM30QhFqQSy-myBcPe_ettP1jXUAgmMU0rF51FY0FIc5koybRzcGglrFVkpOQ6oSbDlOsI0TCqDGaY2zufcBQRF862OYZmURZ4AsT-BBmTXS4MpmmX5xJthzKS8jwSMepTaLm1GM9rmYzxZhnO_ug_hx23JS43JIovoFktVnhpEb6SV35nPwDKWaTI |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbsIwELVaKnW5dKPqXh-4JnUW7ORUqQulLaCqAokb8jKWECVBEC79-toO0EWq1Fvkg2XZcd7LzLw3CNVYzGnCQupRmziMGUs9w5vBI4mQMiJcE-EKZDu02Yuf-_X-QqzutDAA4IrPwLePLpevcjm3obJrq2kzcMPW0YYh1gkt5VqrkIp5PZM0pJuotnDSvHaB8HyoDPoEhPi2Vbi_nORHOxWHJo1d1FmuoywiGfnzQvjy45dF478XuoeqX8I9_LqCpH20BtkB2vnmOXiIbhrTfIzfHm_xcGy-JTNc5Pi-bEuP27lzDy_MHFb3ZB1psSG1ePLOMz7FBZ-NZlXUazx075reoouCNwxJXNj8LGgDQ4qJSAqqbIhDSW54kRaCqYjoBGKmAgBNidSQQGpufcSAB4xbdnOEKlmewTHC5l-QUlFnXEMc11kqwAxILQhLAx6COkFVuxeDSWmUMVhuw-kf41doq9lttwatp87LGdq2x2MrRYLwHFWK6RwuDN4X4tKd8ieYTagT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE-RAS+22nd+International+Conference+on+Humanoid+Robots+%28Humanoids%29&rft.atitle=From+RGB+images+to+Dynamic+Movement+Primitives+for+planar+tasks&rft.au=Sidiropoulos%2C+Antonis&rft.au=Doulgeri%2C+Zoe&rft.date=2023-12-12&rft.pub=IEEE&rft.eissn=2164-0580&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FHumanoids57100.2023.10375217&rft.externalDocID=10375217 |