TP-YOLO: A Lightweight Attention-Based Architecture for Tiny Pest Detection
Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network...
Saved in:
Published in | 2023 IEEE International Conference on Image Processing (ICIP) pp. 3394 - 3398 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network, called TP-YOLO, for tiny pest detection. We introduce two attention-based components, namely Contextual Transformer and Omni-Dimensional Dynamic Convolution modules, to enhance feature extraction. The proposed modules are integrated into the YOLOv8 backbone, a state-of-the-art baseline for object detection. This paper also introduces a new benchmark dataset consisting of 1,600 images of Khapra beetles for objective evaluation of pest detection algorithms. Extensive experiments on two datasets indicate that TP-YOLO achieves competitive detection accuracy while having a significantly smaller model size and fast prediction time. We have made the code available to the public at: https://github.com/yangdi-cv/TP-YOLO. |
---|---|
AbstractList | Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network, called TP-YOLO, for tiny pest detection. We introduce two attention-based components, namely Contextual Transformer and Omni-Dimensional Dynamic Convolution modules, to enhance feature extraction. The proposed modules are integrated into the YOLOv8 backbone, a state-of-the-art baseline for object detection. This paper also introduces a new benchmark dataset consisting of 1,600 images of Khapra beetles for objective evaluation of pest detection algorithms. Extensive experiments on two datasets indicate that TP-YOLO achieves competitive detection accuracy while having a significantly smaller model size and fast prediction time. We have made the code available to the public at: https://github.com/yangdi-cv/TP-YOLO. |
Author | Phung, Son Lam Di, Yang Bouzerdoum, Abdesselam Van Den Berg, Julian Clissold, Jason |
Author_xml | – sequence: 1 givenname: Yang surname: Di fullname: Di, Yang organization: University of Wollongong – sequence: 2 givenname: Son Lam surname: Phung fullname: Phung, Son Lam organization: University of Wollongong – sequence: 3 givenname: Julian surname: Van Den Berg fullname: Van Den Berg, Julian organization: Intelligent System Design – sequence: 4 givenname: Jason surname: Clissold fullname: Clissold, Jason organization: Intelligent System Design – sequence: 5 givenname: Abdesselam surname: Bouzerdoum fullname: Bouzerdoum, Abdesselam organization: University of Wollongong |
BookMark | eNo1j89KxDAYxCPowV19A8G8QGu-_NltvNXqarHQHurB05ImX9yAtpJGZN_eXdQ5zMCPYWAW5HScRiTkGlgOwPRNXdWd1ELpnDMucmD8IMZPyALWvABdCLU6J899l722TXtLS9qEt136xqPTMiUcU5jG7M7M6GgZ7S4ktOkrIvVTpH0Y97TDOdF7PPJD9YKcefM-4-VfLsnL5qGvnrKmfayrsskCZzJlWoGXg1VQCMMsDA6N9uill04bIwa04Ie1Q7YSFrRylgF6j0pIFM4OQizJ1e9uQMTtZwwfJu63_wfFD_o2S-o |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP49359.2023.10222202 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728198356 9781728198354 |
EndPage | 3398 |
ExternalDocumentID | 10222202 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council funderid: 10.13039/501100000923 |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i204t-951f4bc5183a0c1bdea9fef4f4d9aa3bec1fb7de063c195dc01effe534e3dcb33 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:48 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-951f4bc5183a0c1bdea9fef4f4d9aa3bec1fb7de063c195dc01effe534e3dcb33 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10222202 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-8 |
PublicationDateYYYYMMDD | 2023-10-08 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.326264 |
Snippet | Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3394 |
SubjectTerms | attention mechanism CNN Convolution Feature extraction Image edge detection Object detection Performance evaluation Pest detection Predictive models Transformers vision transformers YOLO |
Title | TP-YOLO: A Lightweight Attention-Based Architecture for Tiny Pest Detection |
URI | https://ieeexplore.ieee.org/document/10222202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_pmjVdG29zOjadWw8bzNNokhcYQieSIvrXm6Stv0DwFkIgIS_hey_5vvcQupQ2ZKBRKogFV01YzDWxpyQhitFurpgUYeoEzg_T3mjB7pbxsharey0MAHjyGQSu6f_y1UaW7qms46OTrksduW0jt0qsVXO2aMg748E4Y05pGria4EEz-kfdFA8bw100bSas2CJPQWlEIN9_5WL894r2UPtLoYezT-zZR1tQHKD7eUYeZ5PZFe7jiQu6X_27J-4bU5EaybXFLIX73z4PsHVa8XxdvOHM4gO-AeO5WUUbLYa388GI1MUSyLobMkOsp6SZkLG9onkoqVCQcw2aaaZ4nkfWVFSLRIF1SSTlsZIhdYyROGIQKSmi6BC1ik0BRwjLXgKQWseCpZLpWHFQAhIllUtWpCU_Rm23E6vnKh_GqtmEkz_6T9GOM0jFnDtDLfNSwrmFciMuvAk_APaIoCw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CarmnTtfE2p2Nz3dZDB_M0muQFhtCJdIj-9Sbp5i8QvIUQSMhL-N5Lvu89hK6lCRlomAhiwFUTFnFNzCmJiWI0KBSTwk-swHk0bven7GEWzdZidaeFAQBHPgPPNt1fvlrKlX0qa7noJLCpI7cN8EdBLddas7aoz1uD7iBjVmvq2arg3mb8j8opDjh6e2i8mbLmizx5q0p48v1XNsZ_r2kfNb80ejj7RJ8DtAXlIRrmGXmcpJMb3MGpDbtf3csn7lRVTWsktwa1FO58-z7Axm3F-aJ8w5lBCHwHlWNnlU007d3n3T5Zl0sgi8BnFTG-kmZCRuaSFr6kQkHBNWimmeJFERpjUS1iBcYpkZRHSvrUckaikEGopAjDI9QolyUcIyzbMUBiXAuWSKYjxUEJiJVUNl2RlvwENe1OzJ_rjBjzzSac_tF_hXb6-Sidp4Px8AztWuPUPLpz1KheVnBhgL0Sl86cH4MUo3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=TP-YOLO%3A+A+Lightweight+Attention-Based+Architecture+for+Tiny+Pest+Detection&rft.au=Di%2C+Yang&rft.au=Phung%2C+Son+Lam&rft.au=Van+Den+Berg%2C+Julian&rft.au=Clissold%2C+Jason&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3394&rft.epage=3398&rft_id=info:doi/10.1109%2FICIP49359.2023.10222202&rft.externalDocID=10222202 |