TP-YOLO: A Lightweight Attention-Based Architecture for Tiny Pest Detection

Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 3394 - 3398
Main Authors Di, Yang, Phung, Son Lam, Van Den Berg, Julian, Clissold, Jason, Bouzerdoum, Abdesselam
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network, called TP-YOLO, for tiny pest detection. We introduce two attention-based components, namely Contextual Transformer and Omni-Dimensional Dynamic Convolution modules, to enhance feature extraction. The proposed modules are integrated into the YOLOv8 backbone, a state-of-the-art baseline for object detection. This paper also introduces a new benchmark dataset consisting of 1,600 images of Khapra beetles for objective evaluation of pest detection algorithms. Extensive experiments on two datasets indicate that TP-YOLO achieves competitive detection accuracy while having a significantly smaller model size and fast prediction time. We have made the code available to the public at: https://github.com/yangdi-cv/TP-YOLO.
AbstractList Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must cope well with the dense distribution of small-sized pests in complex backgrounds. This paper proposes a lightweight attention-based network, called TP-YOLO, for tiny pest detection. We introduce two attention-based components, namely Contextual Transformer and Omni-Dimensional Dynamic Convolution modules, to enhance feature extraction. The proposed modules are integrated into the YOLOv8 backbone, a state-of-the-art baseline for object detection. This paper also introduces a new benchmark dataset consisting of 1,600 images of Khapra beetles for objective evaluation of pest detection algorithms. Extensive experiments on two datasets indicate that TP-YOLO achieves competitive detection accuracy while having a significantly smaller model size and fast prediction time. We have made the code available to the public at: https://github.com/yangdi-cv/TP-YOLO.
Author Phung, Son Lam
Di, Yang
Bouzerdoum, Abdesselam
Van Den Berg, Julian
Clissold, Jason
Author_xml – sequence: 1
  givenname: Yang
  surname: Di
  fullname: Di, Yang
  organization: University of Wollongong
– sequence: 2
  givenname: Son Lam
  surname: Phung
  fullname: Phung, Son Lam
  organization: University of Wollongong
– sequence: 3
  givenname: Julian
  surname: Van Den Berg
  fullname: Van Den Berg, Julian
  organization: Intelligent System Design
– sequence: 4
  givenname: Jason
  surname: Clissold
  fullname: Clissold, Jason
  organization: Intelligent System Design
– sequence: 5
  givenname: Abdesselam
  surname: Bouzerdoum
  fullname: Bouzerdoum, Abdesselam
  organization: University of Wollongong
BookMark eNo1j89KxDAYxCPowV19A8G8QGu-_NltvNXqarHQHurB05ImX9yAtpJGZN_eXdQ5zMCPYWAW5HScRiTkGlgOwPRNXdWd1ELpnDMucmD8IMZPyALWvABdCLU6J899l722TXtLS9qEt136xqPTMiUcU5jG7M7M6GgZ7S4ktOkrIvVTpH0Y97TDOdF7PPJD9YKcefM-4-VfLsnL5qGvnrKmfayrsskCZzJlWoGXg1VQCMMsDA6N9uill04bIwa04Ie1Q7YSFrRylgF6j0pIFM4OQizJ1e9uQMTtZwwfJu63_wfFD_o2S-o
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222202
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728198356
9781728198354
EndPage 3398
ExternalDocumentID 10222202
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  funderid: 10.13039/501100000923
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-951f4bc5183a0c1bdea9fef4f4d9aa3bec1fb7de063c195dc01effe534e3dcb33
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-951f4bc5183a0c1bdea9fef4f4d9aa3bec1fb7de063c195dc01effe534e3dcb33
PageCount 5
ParticipantIDs ieee_primary_10222202
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.326264
Snippet Automatic detection of agricultural pests is a challenging problem that is of great interest in biosecurity and precision agriculture. The detection model must...
SourceID ieee
SourceType Publisher
StartPage 3394
SubjectTerms attention mechanism
CNN
Convolution
Feature extraction
Image edge detection
Object detection
Performance evaluation
Pest detection
Predictive models
Transformers
vision transformers
YOLO
Title TP-YOLO: A Lightweight Attention-Based Architecture for Tiny Pest Detection
URI https://ieeexplore.ieee.org/document/10222202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_pmjVdG29zOjadWw8bzNNokhcYQieSIvrXm6Stv0DwFkIgIS_hey_5vvcQupQ2ZKBRKogFV01YzDWxpyQhitFurpgUYeoEzg_T3mjB7pbxsharey0MAHjyGQSu6f_y1UaW7qms46OTrksduW0jt0qsVXO2aMg748E4Y05pGria4EEz-kfdFA8bw100bSas2CJPQWlEIN9_5WL894r2UPtLoYezT-zZR1tQHKD7eUYeZ5PZFe7jiQu6X_27J-4bU5EaybXFLIX73z4PsHVa8XxdvOHM4gO-AeO5WUUbLYa388GI1MUSyLobMkOsp6SZkLG9onkoqVCQcw2aaaZ4nkfWVFSLRIF1SSTlsZIhdYyROGIQKSmi6BC1ik0BRwjLXgKQWseCpZLpWHFQAhIllUtWpCU_Rm23E6vnKh_GqtmEkz_6T9GOM0jFnDtDLfNSwrmFciMuvAk_APaIoCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CarmnTtfE2p2Nz3dZDB_M0muQFhtCJdIj-9Sbp5i8QvIUQSMhL-N5Lvu89hK6lCRlomAhiwFUTFnFNzCmJiWI0KBSTwk-swHk0bven7GEWzdZidaeFAQBHPgPPNt1fvlrKlX0qa7noJLCpI7cN8EdBLddas7aoz1uD7iBjVmvq2arg3mb8j8opDjh6e2i8mbLmizx5q0p48v1XNsZ_r2kfNb80ejj7RJ8DtAXlIRrmGXmcpJMb3MGpDbtf3csn7lRVTWsktwa1FO58-z7Axm3F-aJ8w5lBCHwHlWNnlU007d3n3T5Zl0sgi8BnFTG-kmZCRuaSFr6kQkHBNWimmeJFERpjUS1iBcYpkZRHSvrUckaikEGopAjDI9QolyUcIyzbMUBiXAuWSKYjxUEJiJVUNl2RlvwENe1OzJ_rjBjzzSac_tF_hXb6-Sidp4Px8AztWuPUPLpz1KheVnBhgL0Sl86cH4MUo3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=TP-YOLO%3A+A+Lightweight+Attention-Based+Architecture+for+Tiny+Pest+Detection&rft.au=Di%2C+Yang&rft.au=Phung%2C+Son+Lam&rft.au=Van+Den+Berg%2C+Julian&rft.au=Clissold%2C+Jason&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3394&rft.epage=3398&rft_id=info:doi/10.1109%2FICIP49359.2023.10222202&rft.externalDocID=10222202