Part Aware Graph Convolution Network with Temporal Enhancement for Skeleton-Based Action Recognition

In recent years, skeleton-based human action recognition has attracted broad research interests, and methods based on graph convolution networks have demonstrated excellent performance. However, how to extract the distinguishing spatio-temporal information effectively remains an essential problem. T...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 3255 - 3259
Main Authors Huang, Qian, Nie, Yunqing, Li, Xing, Yang, Tianjin
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, skeleton-based human action recognition has attracted broad research interests, and methods based on graph convolution networks have demonstrated excellent performance. However, how to extract the distinguishing spatio-temporal information effectively remains an essential problem. To address the problem, we propose a novel part aware graph convolution network with temporal enhancement, which can adaptively evaluate the activity level of each part of the body in the action sequence and enhance the extraction of temporal information. Considering that the range of motion of body parts in the action sequence is greater than that of joints, we manually divide the five major parts of the body and generate a skeleton sequence with different attention weights by using part-based attention module. Then, a temporal enhanced module is used to model actions with different duration. Experiments show that our method achieves the state-of-the-art performance.
AbstractList In recent years, skeleton-based human action recognition has attracted broad research interests, and methods based on graph convolution networks have demonstrated excellent performance. However, how to extract the distinguishing spatio-temporal information effectively remains an essential problem. To address the problem, we propose a novel part aware graph convolution network with temporal enhancement, which can adaptively evaluate the activity level of each part of the body in the action sequence and enhance the extraction of temporal information. Considering that the range of motion of body parts in the action sequence is greater than that of joints, we manually divide the five major parts of the body and generate a skeleton sequence with different attention weights by using part-based attention module. Then, a temporal enhanced module is used to model actions with different duration. Experiments show that our method achieves the state-of-the-art performance.
Author Nie, Yunqing
Yang, Tianjin
Li, Xing
Huang, Qian
Author_xml – sequence: 1
  givenname: Qian
  surname: Huang
  fullname: Huang, Qian
  organization: Hohai University,Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing,China
– sequence: 2
  givenname: Yunqing
  surname: Nie
  fullname: Nie, Yunqing
  organization: Hohai University,Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing,China
– sequence: 3
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  organization: Hohai University,Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing,China
– sequence: 4
  givenname: Tianjin
  surname: Yang
  fullname: Yang, Tianjin
  organization: Hohai University,Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing,China
BookMark eNo1j11LwzAYhSPohZv-A8H8gdZ8tU0ua5mzMHTovB5p-taGtUnJosV_7zccOM_NeeAs0KnzDhC6piSllKibuqq3QvFMpYwwnlLCGCuoOEELWjBJleRZfo7arQ4Rl7MOgNdBTz2uvHv3w1u03uEHiLMPBzzb2OMdjJMPesAr12tnYAQXcecDfj7AANG75FYfocWl-dk-gfGvzn7zBTrr9HCEy79eope71a66TzaP67oqN4llRMRENqxtc0VoronOZUdAidww3rSQUSGJ5p0C0J1RQuWcUF7wRpKvgDCdaRVfoqtfrwWA_RTsqMPH_v85_wSrz1Ta
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222714
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728198356
9781728198354
EndPage 3259
ExternalDocumentID 10222714
Genre orig-research
GrantInformation_xml – fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-8b2dd69016a0a68f0e946c23bde51480a3f9eeafc9496301373b80b80e4cfcd93
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-8b2dd69016a0a68f0e946c23bde51480a3f9eeafc9496301373b80b80e4cfcd93
PageCount 5
ParticipantIDs ieee_primary_10222714
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2420714
Snippet In recent years, skeleton-based human action recognition has attracted broad research interests, and methods based on graph convolution networks have...
SourceID ieee
SourceType Publisher
StartPage 3255
SubjectTerms Convolution
Convolutional neural networks
Data mining
Focusing
Graph convolution network
Human action recognition
Human activity recognition
Image recognition
Skeleton
Title Part Aware Graph Convolution Network with Temporal Enhancement for Skeleton-Based Action Recognition
URI https://ieeexplore.ieee.org/document/10222714
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66J59UnPibPPjarmvTNnmcY3MTHEM32NvIjwvKpJPRKfjXm0tbRUEQ-lDKQUou7V0u33cfIddJokzWtWmghRUBiyENOFMyMDqFjOdMg8bSwP0kG83Z3SJd1GR1z4UBAA8-gxBv_Vm-Westlso6fneSo2z1rtu5VWStGrPVjURn3B9PGTJNQ9QEDxvrH7opPmwM98mkGbBCi6zCbalC_fGrF-O_3-iAtL8ZenT6FXsOyQ4UR8RM3TqgvXe5AXqLjaips36r1xadVIBvipVXOqs6Ur3QQfGEfsdhqMtf6ePKxSGUFb5x4c3Qnqc90IcGZrQu2mQ-HMz6o6BWUQie44iVAVexMSg7lclIZtxGIFimY-cjcMkSj2RiBYC0WjD3MWIHwkTxyF3AtNVGJMekVawLOCHUxLlKNP4HrHWJgLPhueEGwOUUMrb6lLRxipavVaOMZTM7Z388Pyd76KkKUndBWuVmC5cuxpfqyvv2EzxUqXQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CarmvTNj3OsbnpVoZusNtokxeUSSejU_CvNy9tFQVB6KGUByl5ab_X9PveR8i172cqbOuAyVjHjHsQMMGzlCkZQCgiLkHi1sA4CQczfjcP5pVY3WphAMCSz8DBU_svX63kBrfKWvbrJELb6m0D_IFXyrUq1lbbjVvD7nDCUWvqoCu4U8f_cE6xwNHfI0k9ZMkXWTqbInPkx69ujP--p33S_Nbo0ckX-hyQLcgPiZqYlUA77-ka6C22oqYm-q1aXTQpKd8U917ptOxJ9UJ7-RNmHoehpoKlj0uDRGgsfGMATtGOFT7Qh5potMqbZNbvTbsDVvkosGfP5QUTmacUGk-FqZuGQrsQ81B6JktgyiXhpr6OAVItY24eR-xB6GfCNQdwqaWK_SPSyFc5HBOqvCjzJb4JtDalgIkRkRIKwFQVqaflCWniFC1ey1YZi3p2Tv-4fkV2BtPxaDEaJvdnZBezVhLszkmjWG_gwiB-kV3aPH8CQ0asvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Part+Aware+Graph+Convolution+Network+with+Temporal+Enhancement+for+Skeleton-Based+Action+Recognition&rft.au=Huang%2C+Qian&rft.au=Nie%2C+Yunqing&rft.au=Li%2C+Xing&rft.au=Yang%2C+Tianjin&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3255&rft.epage=3259&rft_id=info:doi/10.1109%2FICIP49359.2023.10222714&rft.externalDocID=10222714