QL vs. SARSA: Performance Evaluation for Intrusion Prevention Systems in Software-Defined IoT Networks

The resource-constrained IPV6-based low power and lossy network (6LowPAN) is connected through the routing protocol for low power and lossy networks (RPL). This protocol is subject to a routing protocol attack called a rank attack (RA). This paper presents a performance evaluation where leveraging m...

Full description

Saved in:
Bibliographic Details
Published inInternational Wireless Communications and Mobile Computing Conference (Online) pp. 500 - 504
Main Authors Moreira, Christian Miranda, Kaddoum, Georges
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.06.2023
Subjects
Online AccessGet full text
ISSN2376-6506
DOI10.1109/IWCMC58020.2023.10183144

Cover

Loading…
Abstract The resource-constrained IPV6-based low power and lossy network (6LowPAN) is connected through the routing protocol for low power and lossy networks (RPL). This protocol is subject to a routing protocol attack called a rank attack (RA). This paper presents a performance evaluation where leveraging model-free reinforcement-learning (RL) algorithms helps the software-defined network (SDN) controller achieve a cost-efficient solution to prevent the harmful effects of RA. Experimental results demonstrate that the state action reward state action (SARSA) algorithm is more effective than the Q-learning (QL) algorithm, facilitating the implementation of intrusion prevention systems (IPSs) in software-defined 6LowPANs.
AbstractList The resource-constrained IPV6-based low power and lossy network (6LowPAN) is connected through the routing protocol for low power and lossy networks (RPL). This protocol is subject to a routing protocol attack called a rank attack (RA). This paper presents a performance evaluation where leveraging model-free reinforcement-learning (RL) algorithms helps the software-defined network (SDN) controller achieve a cost-efficient solution to prevent the harmful effects of RA. Experimental results demonstrate that the state action reward state action (SARSA) algorithm is more effective than the Q-learning (QL) algorithm, facilitating the implementation of intrusion prevention systems (IPSs) in software-defined 6LowPANs.
Author Moreira, Christian Miranda
Kaddoum, Georges
Author_xml – sequence: 1
  givenname: Christian Miranda
  surname: Moreira
  fullname: Moreira, Christian Miranda
  email: christian.miranda-moreira.l@ens.etsmtl.ca
  organization: École de Technologie Supérieure,Montréal,Canada
– sequence: 2
  givenname: Georges
  surname: Kaddoum
  fullname: Kaddoum, Georges
  email: georges.kaddoum@etsmtl.ca
  organization: École de Technologie Supérieure,Montréal,Canada
BookMark eNo1UMtOwzAQNAgkSukfcPAPJHjtOHa4VaFApAKFFnGsnGQtBVoH2Wmq_j3htZed2RmNNHtOTlzrkBAKLAZg2VXxlj_kUjPOYs64iIGBFpAkR2SSqUwLycQwmT4mIy5UGqWSpWdkEsI7Y0xwAMWTEbHPc9qHmC6nL8vpNV2gt63fGlchnfVmszNd0zo63GjhOr8L32zhsUf3IywPocNtoM0AW9vtjcfoBm3jsKZFu6KP2O1b_xEuyKk1m4CTvz0mr7ezVX4fzZ_uinw6jxrOki5SWSa1Km1SQlVWyFSqZcUrAQqkSTnUAGUiBo-p7VARjc6YLgFA1mJoJcWYXP7mNoi4_vTN1vjD-v814gvT2Vmi
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IWCMC58020.2023.10183144
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350333398
EISSN 2376-6506
EndPage 504
ExternalDocumentID 10183144
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-799587bf4b1cbce07685c2c31715a621d11b43958adf983ea8908b1115d300053
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-799587bf4b1cbce07685c2c31715a621d11b43958adf983ea8908b1115d300053
PageCount 5
ParticipantIDs ieee_primary_10183144
PublicationCentury 2000
PublicationDate 2023-June-19
PublicationDateYYYYMMDD 2023-06-19
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-19
  day: 19
PublicationDecade 2020
PublicationTitle International Wireless Communications and Mobile Computing Conference (Online)
PublicationTitleAbbrev IWCMC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211724
Score 2.2305126
Snippet The resource-constrained IPV6-based low power and lossy network (6LowPAN) is connected through the routing protocol for low power and lossy networks (RPL)....
SourceID ieee
SourceType Publisher
StartPage 500
SubjectTerms 6LowPAN
Collaborative Security Framework
Deep learning
Intrusion Prevention
IoT
Performance evaluation
Q-learning
Rank Attack
Routing protocols
Security
Software defined networking
Software-Defined Network
Wireless communication
Title QL vs. SARSA: Performance Evaluation for Intrusion Prevention Systems in Software-Defined IoT Networks
URI https://ieeexplore.ieee.org/document/10183144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ek158YXynB69dttsWWm8EIWCEoEDkRraPTYjJYgQ08dc73WVBTUy8TZu0aTtJZ6ad7xuEblgSSyWYITJWnPBYGqLqlBLHwVozUU90pulev9YZ8_uJmKzB6hkWxjmXJZ-5wIvZX76dm5V_Kqt6dikGEUAJlSByy8FamwcVBqFMPeJFtk6oqt3nZq8pJDhEgS8SHhTDfxRSyexIex_1ixXk6SMvwWqpA_P5i5zx30s8QJUtZA8PNsboEO249AjtfWMbPEbJ4wN-XwR42HgaNm7xYAsZwK0N5zeGPtxNPRTDtwqGJxDX3OZ4BiLc3R_xmyN3LoH5Le7OR7ifJ5QvKmjcbo2aHbIus0BmUciXxFPCybpOuKZGG-e_5oSJDDgWVMS1iFpKNbgtQsY2UZI5UG4oNdyRwrIMy3uCyuk8dacIwyxWUGkjRxXXDEydYrYmw9hFjInQnKGKP7Lpa86kMS1O6_yP_gu06zXnU7OoukRl2Ly7Aidgqa8z5X8BsCuu5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4UD-rFF8a3PXjtst22bNcbQQgobFAgciPbbjchJosR0MRf73SXBTUx8TbtYdLMNJ1pO983CN2wJJKBYJrIKOCER1KTwKeUGA7Rmgk_UZmnu2G1NeT3IzFagtUzLIwxJis-M44Vs7_8eKoX9qmsYtmlGNwANtGWsGjcHK61elJhcJnxPV7U67hBpf1c79aFhJTIsW3CnULBj1YqWSRp7qGwWENeQPLiLObK0Z-_6Bn_vch9VF6D9nBvFY4O0IZJD9HuN77BI5Q8dvD7zMH92lO_dot7a9AAbqxYvzHM4XZqwRh2VHA8gbhkN8cTEOH0_ojeDLkzCeiPcXs6wGFeUj4ro2GzMai3yLLRApl4Lp8TSwonfZVwRbXSxn7OCe1pSC2oiKoejSlVkLgIGcVJIJkB97pSwSkpYpaheY9RKZ2m5gRh0BILKmPP0IArBsEuYHFVupHxGBOuPkVla7Lxa86lMS6sdfbH_DXabg26nXGnHT6cox3rRVuoRYMLVAJDmEtICebqKtsIX_6Nsi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Wireless+Communications+and+Mobile+Computing+Conference+%28Online%29&rft.atitle=QL+vs.+SARSA%3A+Performance+Evaluation+for+Intrusion+Prevention+Systems+in+Software-Defined+IoT+Networks&rft.au=Moreira%2C+Christian+Miranda&rft.au=Kaddoum%2C+Georges&rft.date=2023-06-19&rft.pub=IEEE&rft.eissn=2376-6506&rft.spage=500&rft.epage=504&rft_id=info:doi/10.1109%2FIWCMC58020.2023.10183144&rft.externalDocID=10183144