Exploring Dependence of Subject-Specific Training Strategies for EEG Based Brain-Computer Interfaces
Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain-...
Saved in:
Published in | Proceedings of IEEE Southeastcon pp. 848 - 853 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain- controlled drone for use in disaster relief and hostage rescue situations. A six-class intent (e.g. EEG) recognition experiment is performed with 42 subjects. This pilot study explores and evaluates the effects of subject-specific ("customized") versus subject- independent ("uncustomized") modeling approaches. Based on experimental validation, we present our discussions on the observed pros and cons of each training strategy. In this study, it was noted that the uncustomized training approach had the best target detection performance with a reduction in variance. Additionally, its deployment readiness attribute make it a more relevant and feasible option for our intended use case. |
---|---|
AbstractList | Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain- controlled drone for use in disaster relief and hostage rescue situations. A six-class intent (e.g. EEG) recognition experiment is performed with 42 subjects. This pilot study explores and evaluates the effects of subject-specific ("customized") versus subject- independent ("uncustomized") modeling approaches. Based on experimental validation, we present our discussions on the observed pros and cons of each training strategy. In this study, it was noted that the uncustomized training approach had the best target detection performance with a reduction in variance. Additionally, its deployment readiness attribute make it a more relevant and feasible option for our intended use case. |
Author | de Wit, T. Warren Menon, Vineetha Davis, Thomas |
Author_xml | – sequence: 1 givenname: T. Warren surname: de Wit fullname: de Wit, T. Warren email: w@warrendewit.com organization: University of Alabama Huntsville,Dept. of Computer Science,Huntsville,USA – sequence: 2 givenname: Vineetha surname: Menon fullname: Menon, Vineetha email: vineetha.menon@uah.edu organization: University of Alabama Huntsville,Dept. of Computer Science,Huntsville,USA – sequence: 3 givenname: Thomas surname: Davis fullname: Davis, Thomas email: thomas.w.davis.civ@mail.mil organization: DEVCOM Data and Analysis Center,Human Systems Integration Division,Huntsville,USA |
BookMark | eNo1kEFPwjAYhqvRRED-gYfePA2_ru22HmVOJCHxMEy8ka79iiXQLVtJ9N8DUS_ve3ny5sk7JjehDUjII4MZY6Ce6vYYv1APsWyDTEHxWQqpmDGQAEyyKzJVuSq4BM5yBvk1GTEpiwRk8XlHxsOwA0hBMDkitvru9m3vw5a-YIfBYjBIW0frY7NDE5O6Q-OdN3Tdax8uXB17HXHrcaCu7WlVLehcD2jp_EIkZXvojhF7ugzndNrgcE9und4POP3rCfl4rdblW7J6XyzL51XizzYxyQFzXTQCjNCZLZA7W4izt5FKQMMlImeNsEZn0uk0c8IUKmdZ5pRw3CrLJ-Thd9cj4qbr_UH3P5v_V_gJPjddUA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/SoutheastCon52093.2024.10500151 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350317107 |
EISSN | 1558-058X |
EndPage | 853 |
ExternalDocumentID | 10500151 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i204t-70e7a8b40c4a6d8e3fd84558c5940b35ee31b4dca65fa26f4c897166f94f3d9d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:10:45 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-70e7a8b40c4a6d8e3fd84558c5940b35ee31b4dca65fa26f4c897166f94f3d9d3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10500151 |
PublicationCentury | 2000 |
PublicationDate | 2024-March-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of IEEE Southeastcon |
PublicationTitleAbbrev | SOUTHEASTCON |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020415 |
Score | 2.250555 |
Snippet | Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 848 |
SubjectTerms | autonomous systems Brain modeling brain-computer interface Brain-computer interfaces context fusion customization decision fusion deep learning deployment disaster relief Disasters Drones EEG Electroencephalography human-robot teaming Object detection subject-independence Training |
Title | Exploring Dependence of Subject-Specific Training Strategies for EEG Based Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/10500151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7ag-jFreJODoKnjDOTpZlra2sRLB5a6K1keYEizIhOL_56k3SmLiB4C2EmhBcmb5nvfR9CN_7Cg8wI49MSyQkDnhJVmNyPmPARtHEQGfieJmI8Y49zPm-a1WMvDABE8BkkYRj_5dvKrEKpzH_hPPh4n-xs-8xt3ay1ya5Cr_kOum1INO-iAl2QvxlUZYB6UJ8L5ixpl_ghphJ9yWgfTdpdrCEkL8mq1on5-EXQ-O9tHqDuV9seft44pEO0BeUR2vvGOHiM7AZzh-8b-Vv_UuWwv0BCRYZEPXq3NHjaaEfglr8W3rEPcPFw-ID73vVZ3A9PkFYWAsfaogsIry6ajYbTwZg0Qgtk6c1Wk14KPSU1Sw1TwkqgzkrGuTS8YKmmHIBmmlmjBHcqF44ZGZinhCuYo7aw9AR1yqqEU4S5YTItIAergBnFtdO2EJliVuVS0-wMdYPBFq9rLo1Fa6vzP-Yv0G44t4D6yvgl6tRvK7jyYUCtr-PxfwLTNrOU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SweXiVnE3B8HTjLMkaeba2lq1LR5a6K1keYFSmBGdXvz1JulMXUDwFoaZEN5M8pb53vchdGMPPIgVUzYt4TQgQKNAZCqxI8JsBK0MeAa-4Yj1J-RpSqdVs7rvhQEADz6D0A39v3xdqKUrldkdTp2Pt8nOpnX8NF61a63zK9dtvoVuKxrNO69B5wRwOkXuwB6pzQYTEtaT_JBT8d6kt4dG9TpWIJJFuCxlqD5-UTT-e6H7qPnVuIdf1i7pAG1Afoh2v3EOHiG9Rt3h-0oA1z5UGGyPEFeTCbwivZkrPK7UI3DNYAvv2Ia4uNt9wG3r_DRuuzuCWhgC--qicRivJpr0uuNOP6ikFoK5NVsZtCJoCS5JpIhgmkNqNLcW5opmJJIpBUhjSbQSjBqRMEMUd9xTzGTEpDrT6TFq5EUOJwhTRXiUQQJaAFGCSiN1xmJBtEi4TONT1HQGm72u2DRmta3O_rh-jbb74-FgNngcPZ-jHfcOHQYspheoUb4t4dIGBaW88p_CJ10ptt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+IEEE+Southeastcon&rft.atitle=Exploring+Dependence+of+Subject-Specific+Training+Strategies+for+EEG+Based+Brain-Computer+Interfaces&rft.au=de+Wit%2C+T.+Warren&rft.au=Menon%2C+Vineetha&rft.au=Davis%2C+Thomas&rft.date=2024-03-15&rft.pub=IEEE&rft.eissn=1558-058X&rft.spage=848&rft.epage=853&rft_id=info:doi/10.1109%2FSoutheastCon52093.2024.10500151&rft.externalDocID=10500151 |