Exploring Dependence of Subject-Specific Training Strategies for EEG Based Brain-Computer Interfaces

Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain-...

Full description

Saved in:
Bibliographic Details
Published inProceedings of IEEE Southeastcon pp. 848 - 853
Main Authors de Wit, T. Warren, Menon, Vineetha, Davis, Thomas
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain- controlled drone for use in disaster relief and hostage rescue situations. A six-class intent (e.g. EEG) recognition experiment is performed with 42 subjects. This pilot study explores and evaluates the effects of subject-specific ("customized") versus subject- independent ("uncustomized") modeling approaches. Based on experimental validation, we present our discussions on the observed pros and cons of each training strategy. In this study, it was noted that the uncustomized training approach had the best target detection performance with a reduction in variance. Additionally, its deployment readiness attribute make it a more relevant and feasible option for our intended use case.
AbstractList Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a pretrained model or to customize a model to each unique end-user. In this work, we apply this question to the application domain of a passive brain- controlled drone for use in disaster relief and hostage rescue situations. A six-class intent (e.g. EEG) recognition experiment is performed with 42 subjects. This pilot study explores and evaluates the effects of subject-specific ("customized") versus subject- independent ("uncustomized") modeling approaches. Based on experimental validation, we present our discussions on the observed pros and cons of each training strategy. In this study, it was noted that the uncustomized training approach had the best target detection performance with a reduction in variance. Additionally, its deployment readiness attribute make it a more relevant and feasible option for our intended use case.
Author de Wit, T. Warren
Menon, Vineetha
Davis, Thomas
Author_xml – sequence: 1
  givenname: T. Warren
  surname: de Wit
  fullname: de Wit, T. Warren
  email: w@warrendewit.com
  organization: University of Alabama Huntsville,Dept. of Computer Science,Huntsville,USA
– sequence: 2
  givenname: Vineetha
  surname: Menon
  fullname: Menon, Vineetha
  email: vineetha.menon@uah.edu
  organization: University of Alabama Huntsville,Dept. of Computer Science,Huntsville,USA
– sequence: 3
  givenname: Thomas
  surname: Davis
  fullname: Davis, Thomas
  email: thomas.w.davis.civ@mail.mil
  organization: DEVCOM Data and Analysis Center,Human Systems Integration Division,Huntsville,USA
BookMark eNo1kEFPwjAYhqvRRED-gYfePA2_ru22HmVOJCHxMEy8ka79iiXQLVtJ9N8DUS_ve3ny5sk7JjehDUjII4MZY6Ce6vYYv1APsWyDTEHxWQqpmDGQAEyyKzJVuSq4BM5yBvk1GTEpiwRk8XlHxsOwA0hBMDkitvru9m3vw5a-YIfBYjBIW0frY7NDE5O6Q-OdN3Tdax8uXB17HXHrcaCu7WlVLehcD2jp_EIkZXvojhF7ugzndNrgcE9und4POP3rCfl4rdblW7J6XyzL51XizzYxyQFzXTQCjNCZLZA7W4izt5FKQMMlImeNsEZn0uk0c8IUKmdZ5pRw3CrLJ-Thd9cj4qbr_UH3P5v_V_gJPjddUA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SoutheastCon52093.2024.10500151
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350317107
EISSN 1558-058X
EndPage 853
ExternalDocumentID 10500151
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i204t-70e7a8b40c4a6d8e3fd84558c5940b35ee31b4dca65fa26f4c897166f94f3d9d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:10:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-70e7a8b40c4a6d8e3fd84558c5940b35ee31b4dca65fa26f4c897166f94f3d9d3
PageCount 6
ParticipantIDs ieee_primary_10500151
PublicationCentury 2000
PublicationDate 2024-March-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-15
  day: 15
PublicationDecade 2020
PublicationTitle Proceedings of IEEE Southeastcon
PublicationTitleAbbrev SOUTHEASTCON
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020415
Score 2.250555
Snippet Design and deployment of brain-computer interface enabled assistive systems poses many practical questions, including the decision of whether to use a...
SourceID ieee
SourceType Publisher
StartPage 848
SubjectTerms autonomous systems
Brain modeling
brain-computer interface
Brain-computer interfaces
context fusion
customization
decision fusion
deep learning
deployment
disaster relief
Disasters
Drones
EEG
Electroencephalography
human-robot teaming
Object detection
subject-independence
Training
Title Exploring Dependence of Subject-Specific Training Strategies for EEG Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/10500151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7ag-jFreJODoKnjDOTpZlra2sRLB5a6K1keYEizIhOL_56k3SmLiB4C2EmhBcmb5nvfR9CN_7Cg8wI49MSyQkDnhJVmNyPmPARtHEQGfieJmI8Y49zPm-a1WMvDABE8BkkYRj_5dvKrEKpzH_hPPh4n-xs-8xt3ay1ya5Cr_kOum1INO-iAl2QvxlUZYB6UJ8L5ixpl_ghphJ9yWgfTdpdrCEkL8mq1on5-EXQ-O9tHqDuV9seft44pEO0BeUR2vvGOHiM7AZzh-8b-Vv_UuWwv0BCRYZEPXq3NHjaaEfglr8W3rEPcPFw-ID73vVZ3A9PkFYWAsfaogsIry6ajYbTwZg0Qgtk6c1Wk14KPSU1Sw1TwkqgzkrGuTS8YKmmHIBmmlmjBHcqF44ZGZinhCuYo7aw9AR1yqqEU4S5YTItIAergBnFtdO2EJliVuVS0-wMdYPBFq9rLo1Fa6vzP-Yv0G44t4D6yvgl6tRvK7jyYUCtr-PxfwLTNrOU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SweXiVnE3B8HTjLMkaeba2lq1LR5a6K1keYFSmBGdXvz1JulMXUDwFoaZEN5M8pb53vchdGMPPIgVUzYt4TQgQKNAZCqxI8JsBK0MeAa-4Yj1J-RpSqdVs7rvhQEADz6D0A39v3xdqKUrldkdTp2Pt8nOpnX8NF61a63zK9dtvoVuKxrNO69B5wRwOkXuwB6pzQYTEtaT_JBT8d6kt4dG9TpWIJJFuCxlqD5-UTT-e6H7qPnVuIdf1i7pAG1Afoh2v3EOHiG9Rt3h-0oA1z5UGGyPEFeTCbwivZkrPK7UI3DNYAvv2Ia4uNt9wG3r_DRuuzuCWhgC--qicRivJpr0uuNOP6ikFoK5NVsZtCJoCS5JpIhgmkNqNLcW5opmJJIpBUhjSbQSjBqRMEMUd9xTzGTEpDrT6TFq5EUOJwhTRXiUQQJaAFGCSiN1xmJBtEi4TONT1HQGm72u2DRmta3O_rh-jbb74-FgNngcPZ-jHfcOHQYspheoUb4t4dIGBaW88p_CJ10ptt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+IEEE+Southeastcon&rft.atitle=Exploring+Dependence+of+Subject-Specific+Training+Strategies+for+EEG+Based+Brain-Computer+Interfaces&rft.au=de+Wit%2C+T.+Warren&rft.au=Menon%2C+Vineetha&rft.au=Davis%2C+Thomas&rft.date=2024-03-15&rft.pub=IEEE&rft.eissn=1558-058X&rft.spage=848&rft.epage=853&rft_id=info:doi/10.1109%2FSoutheastCon52093.2024.10500151&rft.externalDocID=10500151