Addressing Predicate Overlap in Scene Graph Generation with Semantic Granularity Controller

Semantic overlap between predicates (e.g., riding versus on) occurs inevitably when describing a scene. However, most existing Scene Graph Generation (SGG) works sidestep it by modeling the semantic overlap at category-level and assigning merely one-hot target to each sample, which hurt the performa...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Multimedia and Expo) pp. 78 - 83
Main Authors Chen, Guikun, Li, Lin, Luo, Yawei, Xiao, Jun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2023
Subjects
Online AccessGet full text
ISSN1945-788X
DOI10.1109/ICME55011.2023.00022

Cover

Loading…
Abstract Semantic overlap between predicates (e.g., riding versus on) occurs inevitably when describing a scene. However, most existing Scene Graph Generation (SGG) works sidestep it by modeling the semantic overlap at category-level and assigning merely one-hot target to each sample, which hurt the performance on other reasonable predicates. In this paper, we argue that semantic overlap between predicates tends to vary in different abstract patterns, and a subject-object pair should retain multiple reasonable predicates. To this end, we make an early attempt to reformulate SGG as a partial multi-label learning problem and accordingly propose a model-agnostic Semantic Granularity Controller (SGC). SGC consists of a pattern-specific controller, partial multi-label learning, and controllable inference. The former two solve semantic confusion during training, while the latter makes the semantic granularity of prediction controllable. Extensive experiments demonstrate that SGC can improve the performance of SGG and guide the model to predict coarse/fine-grained predicates.
AbstractList Semantic overlap between predicates (e.g., riding versus on) occurs inevitably when describing a scene. However, most existing Scene Graph Generation (SGG) works sidestep it by modeling the semantic overlap at category-level and assigning merely one-hot target to each sample, which hurt the performance on other reasonable predicates. In this paper, we argue that semantic overlap between predicates tends to vary in different abstract patterns, and a subject-object pair should retain multiple reasonable predicates. To this end, we make an early attempt to reformulate SGG as a partial multi-label learning problem and accordingly propose a model-agnostic Semantic Granularity Controller (SGC). SGC consists of a pattern-specific controller, partial multi-label learning, and controllable inference. The former two solve semantic confusion during training, while the latter makes the semantic granularity of prediction controllable. Extensive experiments demonstrate that SGC can improve the performance of SGG and guide the model to predict coarse/fine-grained predicates.
Author Luo, Yawei
Li, Lin
Xiao, Jun
Chen, Guikun
Author_xml – sequence: 1
  givenname: Guikun
  surname: Chen
  fullname: Chen, Guikun
  email: guikun.chen@zju.edu.cn
  organization: Zhejiang University,School of Software Technology,Ningbo,China
– sequence: 2
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  email: mukti@zju.edu.cn
  organization: Zhejiang University,College of Computer Science and Technology,Hangzhou,China
– sequence: 3
  givenname: Yawei
  surname: Luo
  fullname: Luo, Yawei
  email: yaweiluo329@gmail.com
  organization: Zhejiang University,School of Software Technology,Ningbo,China
– sequence: 4
  givenname: Jun
  surname: Xiao
  fullname: Xiao, Jun
  email: junx@cs.zju.edu.cn
  organization: Zhejiang University,College of Computer Science and Technology,Hangzhou,China
BookMark eNotj81Kw0AUhUdRsNa-QRfzAql3Jpm_ZQm1LVQqVEFwUW6TO3YknZRJVPr2VnR1DnyHD84tu4ptJMbGAiZCgLtflo8zpUCIiQSZTwBAygs2csYKrVWhrRP6kg2EK1RmrH29YaOu-zjPwBSFg3zA3qZ1najrQnznT4nqUGFPfP1FqcEjD5FvKorE5wmPez4_14R9aCP_Dv2eb-iAsQ_VL46fDabQn3jZxj61TUPpjl17bDoa_eeQvTzMnstFtlrPl-V0lQUJRZ9pskVtQBReam2wrnJrvTMIO0dWGuVdjcY7PN9RfmcdKV2D3yEIiShI5kM2_vMGItoeUzhgOm0FSOEs6PwHhztXJA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICME55011.2023.00022
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665468916
1665468912
EISSN 1945-788X
EndPage 83
ExternalDocumentID 10219806
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-6e84d7014f2667adc388f97a0b9e8275f9da7f9a4685fb89e56d0fba012aa1e23
IEDL.DBID RIE
IngestDate Wed Aug 27 02:12:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-6e84d7014f2667adc388f97a0b9e8275f9da7f9a4685fb89e56d0fba012aa1e23
PageCount 6
ParticipantIDs ieee_primary_10219806
PublicationCentury 2000
PublicationDate 2023-July
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Multimedia and Expo)
PublicationTitleAbbrev ICME
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744903
Score 1.889505
Snippet Semantic overlap between predicates (e.g., riding versus on) occurs inevitably when describing a scene. However, most existing Scene Graph Generation (SGG)...
SourceID ieee
SourceType Publisher
StartPage 78
SubjectTerms Annotations
Benchmark testing
Label confusion
Partial multi-label learning
Predicate overlap
Predictive models
Scene graph generation
Semantics
Task analysis
Training
Title Addressing Predicate Overlap in Scene Graph Generation with Semantic Granularity Controller
URI https://ieeexplore.ieee.org/document/10219806
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20J0_1o6JWZQ9e0-Zjk-wepbRWoVXQQsFD2c3OSlHTUlIP_npnkrSKIHgLyZCEHXZnZ_a9N4xdBdK5VIrIs0IbTygXesaGwtMii5w2WpiICM6jcTKciLtpPK3J6iUXBgBK8Bl06LI8y7eLbE2lsi61oVaSBLZ3MXOryFrbggrGQqH8qKbHBb7q3vZGfdyAB5QGhiRk6lOL3B9NVMoYMmiy8ebrFXTktbMuTCf7_CXM-O_f22etb7oef9gGogO2A_kha276NfB6-h6x52trS9hr_oL25QlNAfz-g0p6Sz7P0RJXPn5DGta80qMmt3Gq1fJHeEcnzDN6nBN2FbfvvFcB3d9g1WKTQf-pN_Tq5grePPRF4SUghU0xQXIYolNts0hKp1LtGwUyTGOnrE6d0iKRsTNSQZxY3xmNAU3rAMLomDXyRQ4njKNxjK_IbJI6gRmRTJQ1EAugxSKU2Slr0WDNlpV-xmwzTmd_3G-zPXJYBYo9Z41itYYLDP2FuSxd_gVQ_K9J
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvRUHxXf7sFr2jw2ye5RSmurbRVsoeCh7GZnJahpKakHf707SVpFELyFZEjCDrszO_t93xBy7XFjYs4CRzOpHCaM7yjtM0eyJDBSSaYCJDgPR1Fvwu6m4bQiqxdcGAAowGfQxMviLF_PkxWWylrYhlpwFNjetoGfiZKutSmp2GjIhBtUBDnPFa1-e9ixKbiHG0EfpUxdbJL7o41KEUW6dTJaf78Ej7w2V7lqJp-_pBn__YN7pPFN2KOPm1C0T7YgOyD1dccGWk3gQ_J8o3UBfM1erH1xRpMDffjAot6Cppm1tGsfvUUVa1oqUqPjKFZr6RO8WzekCT7OEL1qE3jaLqHub7BskEm3M273nKq9gpP6LsudCDjTsd0iGRukY6mTgHMjYukqAdyPQyO0jI2QLOKhUVxAGGnXKGlDmpQe-MERqWXzDI4JtcahfUWio9gwuyfikdAKQga4XPg8OSENHKzZolTQmK3H6fSP-1dkpzceDmaD_uj-jOyi80qI7Dmp5csVXNhEIFeXhfu_ALNfspk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Multimedia+and+Expo%29&rft.atitle=Addressing+Predicate+Overlap+in+Scene+Graph+Generation+with+Semantic+Granularity+Controller&rft.au=Chen%2C+Guikun&rft.au=Li%2C+Lin&rft.au=Luo%2C+Yawei&rft.au=Xiao%2C+Jun&rft.date=2023-07-01&rft.pub=IEEE&rft.eissn=1945-788X&rft.spage=78&rft.epage=83&rft_id=info:doi/10.1109%2FICME55011.2023.00022&rft.externalDocID=10219806