A Convolutional-Transformer Network for Crack Segmentation with Boundary Awareness

Cracks play a crucial role in assessing the safety and durability of manufactured buildings. However, the long and sharp topological features and complex background of cracks make the task of crack segmentation extremely challenging. In this paper, we propose a novel convolutional-transformer networ...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 86 - 90
Main Authors Tao, Huaqi, Liu, Bingxi, Cui, Jinqiang, Zhang, Hong
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cracks play a crucial role in assessing the safety and durability of manufactured buildings. However, the long and sharp topological features and complex background of cracks make the task of crack segmentation extremely challenging. In this paper, we propose a novel convolutional-transformer network based on encoder-decoder architecture to solve this challenge. Particularly, we designed a Dilated Residual Block (DRB) and a Boundary Awareness Module (BAM). The DRB pays attention to the local detail of cracks and adjusts the feature dimension for other blocks as needed. And the BAM learns the boundary features from the dilated crack label. Furthermore, the DRB is combined with a lightweight transformer that captures global information to serve as an effective encoder. Experimental results show that the proposed network performs better than state-of-the-art algorithms on two typical datasets. Datasets, code, and trained models are available for research at https://github.com/HqiTao/CT-crackseg.
AbstractList Cracks play a crucial role in assessing the safety and durability of manufactured buildings. However, the long and sharp topological features and complex background of cracks make the task of crack segmentation extremely challenging. In this paper, we propose a novel convolutional-transformer network based on encoder-decoder architecture to solve this challenge. Particularly, we designed a Dilated Residual Block (DRB) and a Boundary Awareness Module (BAM). The DRB pays attention to the local detail of cracks and adjusts the feature dimension for other blocks as needed. And the BAM learns the boundary features from the dilated crack label. Furthermore, the DRB is combined with a lightweight transformer that captures global information to serve as an effective encoder. Experimental results show that the proposed network performs better than state-of-the-art algorithms on two typical datasets. Datasets, code, and trained models are available for research at https://github.com/HqiTao/CT-crackseg.
Author Zhang, Hong
Tao, Huaqi
Liu, Bingxi
Cui, Jinqiang
Author_xml – sequence: 1
  givenname: Huaqi
  surname: Tao
  fullname: Tao, Huaqi
  organization: Guangxi University,Nanning,China
– sequence: 2
  givenname: Bingxi
  surname: Liu
  fullname: Liu, Bingxi
  organization: Peng Cheng Laboratory,Shenzhen,China
– sequence: 3
  givenname: Jinqiang
  surname: Cui
  fullname: Cui, Jinqiang
  organization: Peng Cheng Laboratory,Shenzhen,China
– sequence: 4
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: Southern University of Science and Technology,Shenzhen,China
BookMark eNo1j91KxDAUhCPohbvrGwjmBVqTkyZtLmvxp7Csouv1km1OtGybSNq1-PZW1LkZBj6GmQU59cEjIVecpZwzfV1X9VOmhdQpMBApZzArVydkwXMouC6EVOfkuaRV8J-hO45t8KZLttH4wYXYY6QbHKcQD3SOtIqmOdAXfOvRj-YHplM7vtObcPTWxC9aTiaix2FYkTNnugEv_nxJXu9ut9VDsn68r6tynbTAsjFRmCmnWa6EKqR2e9AcZWE5NtYV0u5BoG7QMomgG4O5ZRbASeTaGhQcxJJc_va2iLj7iG0_z9j9_xTfa7RPGw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222276
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISBN 1728198356
9781728198354
EndPage 90
ExternalDocumentID 10222276
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-6e46f907636859fb291e58d1ecdf85db23e9ced05e29cae7d0d22f5e19dae3123
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-6e46f907636859fb291e58d1ecdf85db23e9ced05e29cae7d0d22f5e19dae3123
PageCount 5
ParticipantIDs ieee_primary_10222276
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.4052396
Snippet Cracks play a crucial role in assessing the safety and durability of manufactured buildings. However, the long and sharp topological features and complex...
SourceID ieee
SourceType Publisher
StartPage 86
SubjectTerms Architecture
Buildings
Convolutional codes
Convolutional Neural Network
Crack Segmentation
Deep Learning Application
Image segmentation
Safety
Task analysis
Transformers
Vision Transformer
Title A Convolutional-Transformer Network for Crack Segmentation with Boundary Awareness
URI https://ieeexplore.ieee.org/document/10222276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT-KDt4l38uBruzZt0-ZxDscmOIZusLeRy4nItJPSKfrrTdLWGwi-JeFAQm4nJ-f7zkHoAri5-HUkPZmZQ25e4MrjDKinAaKMGws6zSzf-WZMh7P4ep7Ma7K648IAgAOfgW-LzpevVnJtv8q6zjohKW2hlrHcKrJWjdkKA9Yd9UeT2DJNfZsT3G-kf-RNcWpjsI3GTYcVWmTpr0vhy_dfsRj_PaId1Pli6OHJp-7ZRRuQ76Gt3jevwD667WEj_VLvLf7oTZtHKhR4XMG_sanifsHlEt_B_VNNRMqx_Z7Fly7lUvGGe6-WMmbuxA6aDa6m_aFXp1DwHkgQlx6FmGpj_1IbZ55pQVgISaZCkEpniRIkAiZBBQkQJjmkKlCE6ARCpjhERqsdoHa-yuEQYSYSkQAXItZpLIx0yjmjOtSEU8iIPEIdOz-L5ypKxqKZmuM_2k_Qpl2mCk93itplsYYzo-BLce4W9gMD-ale
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTwIxEG6IHjQefGF824Med2G7zx48IEpAHiEKCTfsY2oMCgZBgv_Fv-Jvs91d8JF4JPHWNj20nXY6037fDEKnwLTiV66wRKQPubbApcUoBJYCcCOmPegwMnzneiMot73rjt_JoPc5FwYAYvAZ2KYY_-XLgRibp7Jc7J2QMEgxlFWYTrSH9nJeudTiPCOkdNUqlq00iYD1QPLeyArAC5T2AAMTaZ0qTqgDfiQdEFJFvuTEBSpA5n0gVDAIZV4SonxwqGTgOiaugdbwy9rQ8ElCD0tRYk6e5irFStMz3FbbZCG3Z-P7kaklvqhK6-hjNsUEn9KzxyNui7df0R__7RpsoOwXBxE357frJspAfwutFb79e2yjmwLWvV_T08MerdbMDIchbiQAd6yruDhkoodv4f4ppVr1sXmAxhdxUqnhFBcmhhSntX4WtRcytx201B_0YRdhyn3uA-PcU6HHde-QMRooRxEWQETEHsoaeXSfkzgg3Zko9v9oP0Er5Va91q1VGtUDtGq2SIIePERLo-EYjrQ5M-LH8abC6G7REvwES7QIhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=A+Convolutional-Transformer+Network+for+Crack+Segmentation+with+Boundary+Awareness&rft.au=Tao%2C+Huaqi&rft.au=Liu%2C+Bingxi&rft.au=Cui%2C+Jinqiang&rft.au=Zhang%2C+Hong&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=86&rft.epage=90&rft_id=info:doi/10.1109%2FICIP49359.2023.10222276&rft.externalDocID=10222276