Self Adaptive Global-Local Feature Enhancement for Radiology Report Generation

Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of radiologists and provide better medical services to remote areas. Most existing works pay attention to the holistic impression of medical image...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 2275 - 2279
Main Authors Wang, Yuhao, Wang, Kai, Liu, Xiaohong, Gao, Tianrun, Zhang, Jingyue, Wang, Guangyu
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of radiologists and provide better medical services to remote areas. Most existing works pay attention to the holistic impression of medical images, failing to utilize important anatomy information. However, in actual clinical practice, radiologists usually locate important anatomical structures, and then look for signs of abnormalities in certain structures and reason the underlying disease. In this paper, we propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report. Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR). Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information. Finally, the captioning generator generates the radiology reports through multi-granularity features. Experiment results illustrate that our model achieved the state-of-the-art performance on two benchmark datasets including the IU X-Ray and MIMIC-CXR. Further analyses also prove that our model is able to leverage the multi-grained information from radiology images and texts so as to help generate more accurate reports.
AbstractList Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of radiologists and provide better medical services to remote areas. Most existing works pay attention to the holistic impression of medical images, failing to utilize important anatomy information. However, in actual clinical practice, radiologists usually locate important anatomical structures, and then look for signs of abnormalities in certain structures and reason the underlying disease. In this paper, we propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report. Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR). Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information. Finally, the captioning generator generates the radiology reports through multi-granularity features. Experiment results illustrate that our model achieved the state-of-the-art performance on two benchmark datasets including the IU X-Ray and MIMIC-CXR. Further analyses also prove that our model is able to leverage the multi-grained information from radiology images and texts so as to help generate more accurate reports.
Author Gao, Tianrun
Wang, Yuhao
Zhang, Jingyue
Wang, Kai
Liu, Xiaohong
Wang, Guangyu
Author_xml – sequence: 1
  givenname: Yuhao
  surname: Wang
  fullname: Wang, Yuhao
  organization: Beijing University of Posts and Telecommunications,State Key Laboratory of Networking and Switching Technology,Beijing,China,100876
– sequence: 2
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Peking University,Peking-Tsinghua Center for Life Sciences,Beijing,100871
– sequence: 3
  givenname: Xiaohong
  surname: Liu
  fullname: Liu, Xiaohong
  organization: Tsinghua University,Department of Computer Science and Technology,Beijing,China,100084
– sequence: 4
  givenname: Tianrun
  surname: Gao
  fullname: Gao, Tianrun
  organization: Beijing University of Posts and Telecommunications,State Key Laboratory of Networking and Switching Technology,Beijing,China,100876
– sequence: 5
  givenname: Jingyue
  surname: Zhang
  fullname: Zhang, Jingyue
  organization: Beijing University of Posts and Telecommunications,State Key Laboratory of Networking and Switching Technology,Beijing,China,100876
– sequence: 6
  givenname: Guangyu
  surname: Wang
  fullname: Wang, Guangyu
  email: guangyu.wang24@gmail.com
  organization: Beijing University of Posts and Telecommunications,State Key Laboratory of Networking and Switching Technology,Beijing,China,100876
BookMark eNo1z09LwzAYgPEIenDTbyCYL9CaP03aHEfZaqGoTD2Pt8kbLXRJiVHYt_fgPD23HzwrchliQELuOSs5Z-ahb_uXykhlSsGELDkTQlRMXZAVr0XDTSOVviZPrzh7unGw5OkHaTfHEeZiiBZmukPI3wnpNnxCsHjEkKmPie7BTXGOHye6xyWmTDsMmCBPMdyQKw_zF96euybvu-1b-1gMz13fboZiEqzKhW6sbZyTTqOX0nNwjkktPPMWFFdjjZqZyjjUUjGspXXV2BgA2zDu_Wjkmtz9uRMiHpY0HSGdDv-P8hd9Sk0O
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222405
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728198356
9781728198354
EndPage 2279
ExternalDocumentID 10222405
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  funderid: 10.13039/501100012166
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-68cc8dd3d6ef33f1add0362f0fca515b7e60949de6350e73cd4b89aac801ffb93
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:48 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-68cc8dd3d6ef33f1add0362f0fca515b7e60949de6350e73cd4b89aac801ffb93
PageCount 5
ParticipantIDs ieee_primary_10222405
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3358898
Snippet Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of...
SourceID ieee
SourceType Publisher
StartPage 2275
SubjectTerms Adaptation models
Attention Mechanism
Fuses
Image Captioning
Logic gates
MIMICs
Pathology
Radiology
Radiology Report Generation
Semantics
Title Self Adaptive Global-Local Feature Enhancement for Radiology Report Generation
URI https://ieeexplore.ieee.org/document/10222405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20J08qVvxmD1433XTjNnuU0tKKlqIWeiub3VkUJS0lufjrncm2ioLgLYQlCTth3rxk3hvGrhWm_NQ4KTITFBIUC8LgQgGAbwvSsV7hiSg-TPRolt3Nb-YbsXqjhQGApvkMEjps_uX7pavpU1mnYScZOZbuInOLYq1Nz1YqTWfcH08zUpomNBM82a7-MTelgY3hPptsbxi7Rd6SuioS9_HLi_HfT3TA2t8KPT79wp5DtgPlEZs8wXvgt96uKIfxaOcv7gmtOJV69Rr4oHyhONNlOdar_NH6KFjhsRTn0YeawtVms-HguT8Sm3kJ4rUrs0ro3Lnce-U1BKVCiqmL8CnI4CyWLUUPNJI54wGLDAk95XxW5MZahygVQmHUMWuVyxJOGDdpN1incwvakX-N9dIpbyWkYLQz5pS1aTMWq2iJsdjuw9kf58_ZHsUkNs9dsFa1ruES0bwqrpoofgLyFKFR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwELYqGGACRBFvPMCYNK-m8cCASquGPlRBK3Urjn0WCJRWJRGC_8Jf4bdxjtsikBgrsUVRhtz589199j0IOffR5LtMOFbAlI8EhYPF8EMLANGCdKyWSE0Uu72wNQxuRtVRiXwsa2EAoEg-A1s_Fnf5ciJyfVRWKdgJRhjzHMo2vL0iQ3u5jK9xOS88r9kY1FvWfIiA9eg5QWaFkRCRlL4MQfm-cnE_a6OtHCU4-vKkBiEyHCYBPa8DNV_IIIkY5wJNt1KJ7rWEFn4dA42qZ8rD5llirsMqcT3uB7q21dZTyO3F__2Y1FI4quYW-VyIaPJTnuw8S2zx_qv747_VwTYpf9cg0v7Su-6QEqS7pHcHz4peST7VVpqagQVWR_tjqoPZfAa0kT5oJGsxKEbk9JZLU5JDDdmgptO2BmSZDFciyB5ZSycp7BPKXE9xEUYcQqE79HDpCF9yB1xgoWDsgJS18sdT0_RjvND74R_vz8hGa9DtjDtxr31ENjUeTKrgMVnLZjmcYOySJacFgii5X_VyfQEyWwFt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Self+Adaptive+Global-Local+Feature+Enhancement+for+Radiology+Report+Generation&rft.au=Wang%2C+Yuhao&rft.au=Wang%2C+Kai&rft.au=Liu%2C+Xiaohong&rft.au=Gao%2C+Tianrun&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=2275&rft.epage=2279&rft_id=info:doi/10.1109%2FICIP49359.2023.10222405&rft.externalDocID=10222405