Research on fault feature extraction of rotating machinery based on adaptive VMD and optimized CYCBD

To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is propose...

Full description

Saved in:
Bibliographic Details
Published in2022 34th Chinese Control and Decision Conference (CCDC) pp. 552 - 557
Main Authors Xie, Ran, Xiong, Ling, Dan, Binbin, Ren, Zeyu
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is proposed in this paper. Mode decomposition of the vibration signal is performed with H-VMD. and then the noise dominant component is denoised by wavelet threshold denoising (WTD). Furthermore, the improved autocorrelation-weighted correlated kurtosis (ACK) when CYCBD enhances the periodic shock component of the denoised signal is the fitness function of ChOA, and the envelope demodulation analysis of the feature-enhanced signal is performed using the teager energy operator (TEO). Simulation analysis and experimental results show that the interference of background noise can be effectively removed and the periodic shock component of the vibration signal be enhanced by the proposed method, which is a new feature extraction method for the fault diagnosis of rotating machinery.
AbstractList To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is proposed in this paper. Mode decomposition of the vibration signal is performed with H-VMD. and then the noise dominant component is denoised by wavelet threshold denoising (WTD). Furthermore, the improved autocorrelation-weighted correlated kurtosis (ACK) when CYCBD enhances the periodic shock component of the denoised signal is the fitness function of ChOA, and the envelope demodulation analysis of the feature-enhanced signal is performed using the teager energy operator (TEO). Simulation analysis and experimental results show that the interference of background noise can be effectively removed and the periodic shock component of the vibration signal be enhanced by the proposed method, which is a new feature extraction method for the fault diagnosis of rotating machinery.
Author Xiong, Ling
Dan, Binbin
Ren, Zeyu
Xie, Ran
Author_xml – sequence: 1
  givenname: Ran
  surname: Xie
  fullname: Xie, Ran
  email: 534237358@qq.com
  organization: Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan,430081
– sequence: 2
  givenname: Ling
  surname: Xiong
  fullname: Xiong, Ling
  email: 981217284@qq.com
  organization: Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan,430081
– sequence: 3
  givenname: Binbin
  surname: Dan
  fullname: Dan, Binbin
  email: 601648926@qq.com
  organization: Key Laboratory of Metallurgical Equipment and Control of Ministry of Education,Wuhan,China,430081
– sequence: 4
  givenname: Zeyu
  surname: Ren
  fullname: Ren, Zeyu
  email: 2392033672@qq.com
  organization: Hunan Institute of Science and Technology,School of Physics and Electronic Science,Yueyang,China,414006
BookMark eNo1kNtKAzEYhKMo2FbfQDAvsDXnTS419QQVQVTwqvyb_ddG2t2STcX69K6oV8PMx8zFjMlB27VIyBlnU86ZO_d-5rUW2kwFE2LKGZOKc75HxtwYrUrrjNsnI-6ULZxS5REZ9_07Y8ZIxkakfsQeIYUl7VrawHaVaYOQtwkpfuYEIccBdA1NXYYc2ze6hrCMLaYdraDH-qcHNWxy_ED6cj-j0A7ZYNfxa6D-1V_OjslhA6seT_50Qp6vr578bTF_uLnzF_MiCqZyoZ0BwyUPRgQOqpGlrCqFpba6VLzhFqw1QSmsXIkodRAmMNSqlshcVVk5Iae_uxERF5sU15B2i_9L5Dejk1gj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC55256.2022.10034111
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665478969
9781665478960
EISSN 1948-9447
EndPage 557
ExternalDocumentID 10034111
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Development Fund
  funderid: 10.13039/501100003009
– fundername: Research and Development
  funderid: 10.13039/100006190
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-596a6131c62c1a4f373bb4e7585741f18a886c44eb97ee35c26c0e54d3e09bb83
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:23 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-596a6131c62c1a4f373bb4e7585741f18a886c44eb97ee35c26c0e54d3e09bb83
PageCount 6
ParticipantIDs ieee_primary_10034111
PublicationCentury 2000
PublicationDate 2022-Aug.-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2022 34th Chinese Control and Decision Conference (CCDC)
PublicationTitleAbbrev CCDC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.8512514
Snippet To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition...
SourceID ieee
SourceType Publisher
StartPage 552
SubjectTerms Electric shock
Fault diagnosis
Fault feature extraction
Feature extraction
Interference
Linear programming
Maximum second-order cyclostationarity blind deconvolution
Noise reduction
Teager energy operator
Variational mode decomposition
Vibrations
Wavelet threshold denoising
Title Research on fault feature extraction of rotating machinery based on adaptive VMD and optimized CYCBD
URI https://ieeexplore.ieee.org/document/10034111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwFbHLB64JceJsV1KqCqkVB4rKqfIyRhU0qaLkQL8eT9KwSUjcEkdWIjuZl_G890zIdSKDRAkGThgDR0kOIAlAOozLgGl8TRgKhceTaDTl97NwthGrN1oYAGjIZ-DiYVPL14WqcanMfuGeDbqo5N2O07QVa3VhN0LvqA2Bi3npTZYNsjC0gG5zQN93u64_NlFpMGS4Rybd3VvqyKtbV9JV61_GjP9-vH3S_5Lr0YdPIDogW5Afkt1vToNHRHcMO1rk1Ij6raIGGk9PaqNz2aobaGFoWWBtPn-hy4ZlCeU7RaDT2E9oscLoSJ_GAypy22ZPl4u1vZo9Z7eDPpkO7x6zkbPZYMFZ-B6vnDCNhIVzpiJfMcFNEAdScsAUwv5oGJaIJIkU5yDTGCAIlR8pD0KuA_BSKZPgmPTyIocTQo3kkZFa-0pbvLNpCpMmjj2TcsaxVHpK-jhg81XroTHvxursj_ZzsoPzhqu3LLwgvaqs4dLCfyWvmmn_AJz9rhU
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDCq4g3HlhT4sR5raRUBdqKoUVlqmL7jCpoUkXJQH89vqThJSGxJY6sRLZz353v-86EXIXCDWXCwPIC4CjJASQBCItx4TKFy4ShUHgw9Htjfj_xJiuxeqWFAYCKfAZtvKxy-SqTJW6VmT_cNkYXlbwbxrEO_Vqu1RheH6tHrShczI6u47gTe56BdBMFOk676fzjGJUKRbo7ZNi8vyaPvLbLQrTl8ldpxn9_4C5pfQn26OMnFO2RNUj3yfa3WoMHRDUcO5qlVCflW0E1VFU9qbHPea1voJmmeYbZ-fSFziueJeTvFKFOYb9EJQu0j_Rp0KFJatrM7Xy2NE_j5_im0yLj7u0o7lmrIxasmWPzwvIiPzGAzqTvSJZw7QauEBwwiDCuhmZhEoa-5BxEFAC4nnR8aYPHlQt2JEToHpL1NEvhiFAtuK-FUo5UBvFMoMKEDgJbR5xxTJYekxYO2HRRV9GYNmN18kf7JdnsjQb9af9u-HBKtnAOcS-XeWdkvchLODfOQCEuqiXwAeWUsWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+34th+Chinese+Control+and+Decision+Conference+%28CCDC%29&rft.atitle=Research+on+fault+feature+extraction+of+rotating+machinery+based+on+adaptive+VMD+and+optimized+CYCBD&rft.au=Xie%2C+Ran&rft.au=Xiong%2C+Ling&rft.au=Dan%2C+Binbin&rft.au=Ren%2C+Zeyu&rft.date=2022-08-15&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=552&rft.epage=557&rft_id=info:doi/10.1109%2FCCDC55256.2022.10034111&rft.externalDocID=10034111