Research on fault feature extraction of rotating machinery based on adaptive VMD and optimized CYCBD
To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is propose...
Saved in:
Published in | 2022 34th Chinese Control and Decision Conference (CCDC) pp. 552 - 557 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is proposed in this paper. Mode decomposition of the vibration signal is performed with H-VMD. and then the noise dominant component is denoised by wavelet threshold denoising (WTD). Furthermore, the improved autocorrelation-weighted correlated kurtosis (ACK) when CYCBD enhances the periodic shock component of the denoised signal is the fitness function of ChOA, and the envelope demodulation analysis of the feature-enhanced signal is performed using the teager energy operator (TEO). Simulation analysis and experimental results show that the interference of background noise can be effectively removed and the periodic shock component of the vibration signal be enhanced by the proposed method, which is a new feature extraction method for the fault diagnosis of rotating machinery. |
---|---|
AbstractList | To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition (H-VMD) combined with optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) fault feature extraction method is proposed in this paper. Mode decomposition of the vibration signal is performed with H-VMD. and then the noise dominant component is denoised by wavelet threshold denoising (WTD). Furthermore, the improved autocorrelation-weighted correlated kurtosis (ACK) when CYCBD enhances the periodic shock component of the denoised signal is the fitness function of ChOA, and the envelope demodulation analysis of the feature-enhanced signal is performed using the teager energy operator (TEO). Simulation analysis and experimental results show that the interference of background noise can be effectively removed and the periodic shock component of the vibration signal be enhanced by the proposed method, which is a new feature extraction method for the fault diagnosis of rotating machinery. |
Author | Xiong, Ling Dan, Binbin Ren, Zeyu Xie, Ran |
Author_xml | – sequence: 1 givenname: Ran surname: Xie fullname: Xie, Ran email: 534237358@qq.com organization: Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan,430081 – sequence: 2 givenname: Ling surname: Xiong fullname: Xiong, Ling email: 981217284@qq.com organization: Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan,430081 – sequence: 3 givenname: Binbin surname: Dan fullname: Dan, Binbin email: 601648926@qq.com organization: Key Laboratory of Metallurgical Equipment and Control of Ministry of Education,Wuhan,China,430081 – sequence: 4 givenname: Zeyu surname: Ren fullname: Ren, Zeyu email: 2392033672@qq.com organization: Hunan Institute of Science and Technology,School of Physics and Electronic Science,Yueyang,China,414006 |
BookMark | eNo1kNtKAzEYhKMo2FbfQDAvsDXnTS419QQVQVTwqvyb_ddG2t2STcX69K6oV8PMx8zFjMlB27VIyBlnU86ZO_d-5rUW2kwFE2LKGZOKc75HxtwYrUrrjNsnI-6ULZxS5REZ9_07Y8ZIxkakfsQeIYUl7VrawHaVaYOQtwkpfuYEIccBdA1NXYYc2ze6hrCMLaYdraDH-qcHNWxy_ED6cj-j0A7ZYNfxa6D-1V_OjslhA6seT_50Qp6vr578bTF_uLnzF_MiCqZyoZ0BwyUPRgQOqpGlrCqFpba6VLzhFqw1QSmsXIkodRAmMNSqlshcVVk5Iae_uxERF5sU15B2i_9L5Dejk1gj |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCDC55256.2022.10034111 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665478969 9781665478960 |
EISSN | 1948-9447 |
EndPage | 557 |
ExternalDocumentID | 10034111 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Development Fund funderid: 10.13039/501100003009 – fundername: Research and Development funderid: 10.13039/100006190 – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI JC5 M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i204t-596a6131c62c1a4f373bb4e7585741f18a886c44eb97ee35c26c0e54d3e09bb83 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:23 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-596a6131c62c1a4f373bb4e7585741f18a886c44eb97ee35c26c0e54d3e09bb83 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10034111 |
PublicationCentury | 2000 |
PublicationDate | 2022-Aug.-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 2022 34th Chinese Control and Decision Conference (CCDC) |
PublicationTitleAbbrev | CCDC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0066300 |
Score | 1.8512514 |
Snippet | To solve the problem that early fault features of rotating machinery are difficult to extract, an adaptive k-value hierarchical variational mode decomposition... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 552 |
SubjectTerms | Electric shock Fault diagnosis Fault feature extraction Feature extraction Interference Linear programming Maximum second-order cyclostationarity blind deconvolution Noise reduction Teager energy operator Variational mode decomposition Vibrations Wavelet threshold denoising |
Title | Research on fault feature extraction of rotating machinery based on adaptive VMD and optimized CYCBD |
URI | https://ieeexplore.ieee.org/document/10034111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwFbHLB64JceJsV1KqCqkVB4rKqfIyRhU0qaLkQL8eT9KwSUjcEkdWIjuZl_G890zIdSKDRAkGThgDR0kOIAlAOozLgGl8TRgKhceTaDTl97NwthGrN1oYAGjIZ-DiYVPL14WqcanMfuGeDbqo5N2O07QVa3VhN0LvqA2Bi3npTZYNsjC0gG5zQN93u64_NlFpMGS4Rybd3VvqyKtbV9JV61_GjP9-vH3S_5Lr0YdPIDogW5Afkt1vToNHRHcMO1rk1Ij6raIGGk9PaqNz2aobaGFoWWBtPn-hy4ZlCeU7RaDT2E9oscLoSJ_GAypy22ZPl4u1vZo9Z7eDPpkO7x6zkbPZYMFZ-B6vnDCNhIVzpiJfMcFNEAdScsAUwv5oGJaIJIkU5yDTGCAIlR8pD0KuA_BSKZPgmPTyIocTQo3kkZFa-0pbvLNpCpMmjj2TcsaxVHpK-jhg81XroTHvxursj_ZzsoPzhqu3LLwgvaqs4dLCfyWvmmn_AJz9rhU |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDCq4g3HlhT4sR5raRUBdqKoUVlqmL7jCpoUkXJQH89vqThJSGxJY6sRLZz353v-86EXIXCDWXCwPIC4CjJASQBCItx4TKFy4ShUHgw9Htjfj_xJiuxeqWFAYCKfAZtvKxy-SqTJW6VmT_cNkYXlbwbxrEO_Vqu1RheH6tHrShczI6u47gTe56BdBMFOk676fzjGJUKRbo7ZNi8vyaPvLbLQrTl8ldpxn9_4C5pfQn26OMnFO2RNUj3yfa3WoMHRDUcO5qlVCflW0E1VFU9qbHPea1voJmmeYbZ-fSFziueJeTvFKFOYb9EJQu0j_Rp0KFJatrM7Xy2NE_j5_im0yLj7u0o7lmrIxasmWPzwvIiPzGAzqTvSJZw7QauEBwwiDCuhmZhEoa-5BxEFAC4nnR8aYPHlQt2JEToHpL1NEvhiFAtuK-FUo5UBvFMoMKEDgJbR5xxTJYekxYO2HRRV9GYNmN18kf7JdnsjQb9af9u-HBKtnAOcS-XeWdkvchLODfOQCEuqiXwAeWUsWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+34th+Chinese+Control+and+Decision+Conference+%28CCDC%29&rft.atitle=Research+on+fault+feature+extraction+of+rotating+machinery+based+on+adaptive+VMD+and+optimized+CYCBD&rft.au=Xie%2C+Ran&rft.au=Xiong%2C+Ling&rft.au=Dan%2C+Binbin&rft.au=Ren%2C+Zeyu&rft.date=2022-08-15&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=552&rft.epage=557&rft_id=info:doi/10.1109%2FCCDC55256.2022.10034111&rft.externalDocID=10034111 |