Data-Driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics
This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated...
Saved in:
Published in | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 8574 - 8581 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-0866 |
DOI | 10.1109/IROS55552.2023.10341396 |
Cover
Loading…
Abstract | This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated robots-assuming known dynamics and environments. This paper considers the case of uncertain models and environments and presents a data-driven representation of the S2S dynamics that can be learned via an adaptive control approach that is both data-efficient and easy to implement. The learned S2S controller generates desired discrete foot placement, which is then realized on the full-order dynamics of the bipedal robot by tracking desired outputs synthesized from the given foot placement. The benefits of the proposed approach are twofold. First, it improves the ability of the robot to walk at a given desired velocity when compared to the non-adaptive baseline controller. Second, the data-driven approach enables stable and agile locomotion under the effect of various unknown disturbances: additional unmodeled payload, large robot model errors, external disturbance forces, biased velocity estimation, and sloped terrains. This is demonstrated through in-depth evaluation with a high-fidelity simulation of the bipedal robot Cassie subject to the aforementioned disturbances [1]. |
---|---|
AbstractList | This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated robots-assuming known dynamics and environments. This paper considers the case of uncertain models and environments and presents a data-driven representation of the S2S dynamics that can be learned via an adaptive control approach that is both data-efficient and easy to implement. The learned S2S controller generates desired discrete foot placement, which is then realized on the full-order dynamics of the bipedal robot by tracking desired outputs synthesized from the given foot placement. The benefits of the proposed approach are twofold. First, it improves the ability of the robot to walk at a given desired velocity when compared to the non-adaptive baseline controller. Second, the data-driven approach enables stable and agile locomotion under the effect of various unknown disturbances: additional unmodeled payload, large robot model errors, external disturbance forces, biased velocity estimation, and sloped terrains. This is demonstrated through in-depth evaluation with a high-fidelity simulation of the bipedal robot Cassie subject to the aforementioned disturbances [1]. |
Author | Lee, Jaemin Xiong, Xiaobin Dai, Min Ames, Aaron D. |
Author_xml | – sequence: 1 givenname: Min surname: Dai fullname: Dai, Min email: mdai@caltech.edu organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125 – sequence: 2 givenname: Xiaobin surname: Xiong fullname: Xiong, Xiaobin email: xiaobin.xiong@wisc.edu organization: University of Wisconsin-Madison,Department of Mechanical Engineering,Madison,WI,USA,53706 – sequence: 3 givenname: Jaemin surname: Lee fullname: Lee, Jaemin email: jaemin87@caltech.edu organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125 – sequence: 4 givenname: Aaron D. surname: Ames fullname: Ames, Aaron D. email: ames@caltech.edu organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125 |
BookMark | eNo1kF1LwzAYhaMouM39A8H8gdQ3H02ay7lOHRQKm16PtEkwsjWljcr-vfPr3DwXBx44Z4ouutg5hG4pZJSCvltv6m1-CssYMJ5R4IJyLc_QlEqZC001yHM0YTTnBAopr9B8HN8AgILShZYTVJcmGVIO4cN1eGFNn0wKscM-DngTm_cx4fvQO2v2uIptPMSf9jOkV7xNricpkm_i8tiZQ2jHa3TpzX508z_O0MvD6nn5RKr6cb1cVCQwEIkIy7h1zWlDwxrLvARvlVbaWpH7PHfGQMvAai5aw1ulvPDOUyZVYRVrFeczdPPrDc65XT-EgxmOu_8D-Be7rFJg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IROS55552.2023.10341396 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665491906 9781665491907 |
EISSN | 2153-0866 |
EndPage | 8581 |
ExternalDocumentID | 10341396 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF CMMI grantid: 1923239 funderid: 10.13039/100000147 – fundername: NSF NRI grantid: 1924526 funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i204t-4d23deb109b2bd2f60fd7979dd45f55eaa0c20d934ca3c77f4fef12678d72c733 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-4d23deb109b2bd2f60fd7979dd45f55eaa0c20d934ca3c77f4fef12678d72c733 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10341396 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-1 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems |
PublicationTitleAbbrev | IROS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001079896 |
Score | 2.2879107 |
Snippet | This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8574 |
SubjectTerms | Adaptation models Behavioral sciences Dynamics Estimation Legged locomotion Robots Robustness |
Title | Data-Driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics |
URI | https://ieeexplore.ieee.org/document/10341396 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPiamubSLI_qHFN0k-lgbyNXGMo6tvbFX2_Sbt5AsC8thUJI0u8kX875DgAXiguqiI0egGk7bFBSjySmGkni4nI2gkTUDj_2s96I3Y_5eCVWr7QwzrmKfOaS-Fid5dvclDFVFv7wGHNl1gCNMM9qsdZXQgUL2ZbZisOVYnl5Nxw883BFvRWhyfrrHz4qFYx0t0F_3YCaPfKalIVOzPuv2oz_buEOaH0p9uDTJxbtgg032wNb34oN7oNBRxUKdRYxvMErq-b1ITwMq1Y4zHW5LOD1dO6seoMPuclrex8Y87QwUsFQkaN4h53aw37ZAqPu7ctND63sFNCUYFYgZgm1ITRjqYm2xGfYWyGFtJZxz7lTChuCraTMKGqE8Mw7n5KAZlYQIyg9AM1ZPnOHAErHtJaZIZJrJqjX2sQyp96EzRDTgh-BVuybybyumDFZd8vxH-9PwGYcopokdwqaxaJ0ZwHsC31eDfIHcbqoPw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QXbxPv5sHX1jaXZnlU59h0F5kb7G3kCkNZx9a--OtN2s2pINiXlEIgJPQ7yZdzvgPAjaAMC6S9B2BccweU2AY8wjLgyPjtrAcJrx3udJPmkDyN6GgpVi-0MMaYgnxmQv9a3OXrVOU-Veb-cB9zebIJthzwE1rKtdYplYjxGk-WLK444retfu-VuscrrhAOV_1_OKkUQNLYA93VEEr-yFuYZzJUH7-qM_57jPugutbswZcvNDoAG2Z6CHa_lRs8Ar26yERQn_sAB--0mJXX8NDtW2E_lfkig_eTmdHiHbZTlZYGP9BnaqEngwVZGvgW1ksX-0UVDBuPg4dmsDRUCCYoIllANMLaBeeISyQ1sklkNeOMa02opdQIESkUaY6JElgxZok1NkYOzzRDimF8DCrTdGpOAOSGSMkThTiVhGErpfKFTq1yxyEiGT0FVT8341lZM2O8mpazP75fg-3moNMet1vd53Ow45erpMxdgEo2z82lg_5MXhUL_glxAauM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Data-Driven+Adaptation+for+Robust+Bipedal+Locomotion+with+Step-to-Step+Dynamics&rft.au=Dai%2C+Min&rft.au=Xiong%2C+Xiaobin&rft.au=Lee%2C+Jaemin&rft.au=Ames%2C+Aaron+D.&rft.date=2023-10-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=8574&rft.epage=8581&rft_id=info:doi/10.1109%2FIROS55552.2023.10341396&rft.externalDocID=10341396 |