Data-Driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics

This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 8574 - 8581
Main Authors Dai, Min, Xiong, Xiaobin, Lee, Jaemin, Ames, Aaron D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2023
Subjects
Online AccessGet full text
ISSN2153-0866
DOI10.1109/IROS55552.2023.10341396

Cover

Loading…
Abstract This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated robots-assuming known dynamics and environments. This paper considers the case of uncertain models and environments and presents a data-driven representation of the S2S dynamics that can be learned via an adaptive control approach that is both data-efficient and easy to implement. The learned S2S controller generates desired discrete foot placement, which is then realized on the full-order dynamics of the bipedal robot by tracking desired outputs synthesized from the given foot placement. The benefits of the proposed approach are twofold. First, it improves the ability of the robot to walk at a given desired velocity when compared to the non-adaptive baseline controller. Second, the data-driven approach enables stable and agile locomotion under the effect of various unknown disturbances: additional unmodeled payload, large robot model errors, external disturbance forces, biased velocity estimation, and sloped terrains. This is demonstrated through in-depth evaluation with a high-fidelity simulation of the bipedal robot Cassie subject to the aforementioned disturbances [1].
AbstractList This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated robots-assuming known dynamics and environments. This paper considers the case of uncertain models and environments and presents a data-driven representation of the S2S dynamics that can be learned via an adaptive control approach that is both data-efficient and easy to implement. The learned S2S controller generates desired discrete foot placement, which is then realized on the full-order dynamics of the bipedal robot by tracking desired outputs synthesized from the given foot placement. The benefits of the proposed approach are twofold. First, it improves the ability of the robot to walk at a given desired velocity when compared to the non-adaptive baseline controller. Second, the data-driven approach enables stable and agile locomotion under the effect of various unknown disturbances: additional unmodeled payload, large robot model errors, external disturbance forces, biased velocity estimation, and sloped terrains. This is demonstrated through in-depth evaluation with a high-fidelity simulation of the bipedal robot Cassie subject to the aforementioned disturbances [1].
Author Lee, Jaemin
Xiong, Xiaobin
Dai, Min
Ames, Aaron D.
Author_xml – sequence: 1
  givenname: Min
  surname: Dai
  fullname: Dai, Min
  email: mdai@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125
– sequence: 2
  givenname: Xiaobin
  surname: Xiong
  fullname: Xiong, Xiaobin
  email: xiaobin.xiong@wisc.edu
  organization: University of Wisconsin-Madison,Department of Mechanical Engineering,Madison,WI,USA,53706
– sequence: 3
  givenname: Jaemin
  surname: Lee
  fullname: Lee, Jaemin
  email: jaemin87@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125
– sequence: 4
  givenname: Aaron D.
  surname: Ames
  fullname: Ames, Aaron D.
  email: ames@caltech.edu
  organization: California Institute of Technology,Department of Mechanical and Civil Engineering,Pasadena,CA,USA,91125
BookMark eNo1kF1LwzAYhaMouM39A8H8gdQ3H02ay7lOHRQKm16PtEkwsjWljcr-vfPr3DwXBx44Z4ouutg5hG4pZJSCvltv6m1-CssYMJ5R4IJyLc_QlEqZC001yHM0YTTnBAopr9B8HN8AgILShZYTVJcmGVIO4cN1eGFNn0wKscM-DngTm_cx4fvQO2v2uIptPMSf9jOkV7xNricpkm_i8tiZQ2jHa3TpzX508z_O0MvD6nn5RKr6cb1cVCQwEIkIy7h1zWlDwxrLvARvlVbaWpH7PHfGQMvAai5aw1ulvPDOUyZVYRVrFeczdPPrDc65XT-EgxmOu_8D-Be7rFJg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS55552.2023.10341396
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665491906
9781665491907
EISSN 2153-0866
EndPage 8581
ExternalDocumentID 10341396
Genre orig-research
GrantInformation_xml – fundername: NSF CMMI
  grantid: 1923239
  funderid: 10.13039/100000147
– fundername: NSF NRI
  grantid: 1924526
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-4d23deb109b2bd2f60fd7979dd45f55eaa0c20d934ca3c77f4fef12678d72c733
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-4d23deb109b2bd2f60fd7979dd45f55eaa0c20d934ca3c77f4fef12678d72c733
PageCount 8
ParticipantIDs ieee_primary_10341396
PublicationCentury 2000
PublicationDate 2023-Oct.-1
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.2879107
Snippet This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external...
SourceID ieee
SourceType Publisher
StartPage 8574
SubjectTerms Adaptation models
Behavioral sciences
Dynamics
Estimation
Legged locomotion
Robots
Robustness
Title Data-Driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics
URI https://ieeexplore.ieee.org/document/10341396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPiamubSLI_qHFN0k-lgbyNXGMo6tvbFX2_Sbt5AsC8thUJI0u8kX875DgAXiguqiI0egGk7bFBSjySmGkni4nI2gkTUDj_2s96I3Y_5eCVWr7QwzrmKfOaS-Fid5dvclDFVFv7wGHNl1gCNMM9qsdZXQgUL2ZbZisOVYnl5Nxw883BFvRWhyfrrHz4qFYx0t0F_3YCaPfKalIVOzPuv2oz_buEOaH0p9uDTJxbtgg032wNb34oN7oNBRxUKdRYxvMErq-b1ITwMq1Y4zHW5LOD1dO6seoMPuclrex8Y87QwUsFQkaN4h53aw37ZAqPu7ctND63sFNCUYFYgZgm1ITRjqYm2xGfYWyGFtJZxz7lTChuCraTMKGqE8Mw7n5KAZlYQIyg9AM1ZPnOHAErHtJaZIZJrJqjX2sQyp96EzRDTgh-BVuybybyumDFZd8vxH-9PwGYcopokdwqaxaJ0ZwHsC31eDfIHcbqoPw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QXbxPv5sHX1jaXZnlU59h0F5kb7G3kCkNZx9a--OtN2s2pINiXlEIgJPQ7yZdzvgPAjaAMC6S9B2BccweU2AY8wjLgyPjtrAcJrx3udJPmkDyN6GgpVi-0MMaYgnxmQv9a3OXrVOU-Veb-cB9zebIJthzwE1rKtdYplYjxGk-WLK444retfu-VuscrrhAOV_1_OKkUQNLYA93VEEr-yFuYZzJUH7-qM_57jPugutbswZcvNDoAG2Z6CHa_lRs8Ar26yERQn_sAB--0mJXX8NDtW2E_lfkig_eTmdHiHbZTlZYGP9BnaqEngwVZGvgW1ksX-0UVDBuPg4dmsDRUCCYoIllANMLaBeeISyQ1sklkNeOMa02opdQIESkUaY6JElgxZok1NkYOzzRDimF8DCrTdGpOAOSGSMkThTiVhGErpfKFTq1yxyEiGT0FVT8341lZM2O8mpazP75fg-3moNMet1vd53Ow45erpMxdgEo2z82lg_5MXhUL_glxAauM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Data-Driven+Adaptation+for+Robust+Bipedal+Locomotion+with+Step-to-Step+Dynamics&rft.au=Dai%2C+Min&rft.au=Xiong%2C+Xiaobin&rft.au=Lee%2C+Jaemin&rft.au=Ames%2C+Aaron+D.&rft.date=2023-10-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=8574&rft.epage=8581&rft_id=info:doi/10.1109%2FIROS55552.2023.10341396&rft.externalDocID=10341396