A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks

This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augme...

Full description

Saved in:
Bibliographic Details
Published inIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium pp. 360 - 363
Main Authors Orescanin, M., Harrington, B., Olson, D., Geilhufe, M., Hansen, R. E., Warakagoda, N.
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augmentations that violate the geometry and physics of SAS has not been fully explored. To address this gap, we developed a unique dataset for detecting imaging artifacts in SAS imagery with DL and trained a Bayesian neural network with a ResNet architecture using widely used augmentations in DL for computer vision, as well as common augmentations used in the SAS literature. The study shows that augmentations that violate the geometry and imaging physics of SAS can negatively impact supervised classification, but can sometimes improve performance. Overall, the study provides important insights into the impact of different types of augmentations on the performance of DL models in SAS applications.
AbstractList This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augmentations that violate the geometry and physics of SAS has not been fully explored. To address this gap, we developed a unique dataset for detecting imaging artifacts in SAS imagery with DL and trained a Bayesian neural network with a ResNet architecture using widely used augmentations in DL for computer vision, as well as common augmentations used in the SAS literature. The study shows that augmentations that violate the geometry and imaging physics of SAS can negatively impact supervised classification, but can sometimes improve performance. Overall, the study provides important insights into the impact of different types of augmentations on the performance of DL models in SAS applications.
Author Orescanin, M.
Geilhufe, M.
Hansen, R. E.
Harrington, B.
Olson, D.
Warakagoda, N.
Author_xml – sequence: 1
  givenname: M.
  surname: Orescanin
  fullname: Orescanin, M.
  organization: Naval Postgraduate School,Monterey,CA,USA
– sequence: 2
  givenname: B.
  surname: Harrington
  fullname: Harrington, B.
  organization: Naval Postgraduate School,Monterey,CA,USA
– sequence: 3
  givenname: D.
  surname: Olson
  fullname: Olson, D.
  organization: Naval Postgraduate School,Monterey,CA,USA
– sequence: 4
  givenname: M.
  surname: Geilhufe
  fullname: Geilhufe, M.
  organization: Norwegian Defense Research Establishment,Kjeller,Norway
– sequence: 5
  givenname: R. E.
  surname: Hansen
  fullname: Hansen, R. E.
  organization: Norwegian Defense Research Establishment,Kjeller,Norway
– sequence: 6
  givenname: N.
  surname: Warakagoda
  fullname: Warakagoda, N.
  organization: Norwegian Defense Research Establishment,Kjeller,Norway
BookMark eNo1kEFPwkAUhFejiYD8Aw_rDyi-fcu222MDiCREEwtnsm3fQpVusd3GcPOnW6OeZiaZ-Q4zZFeudsTYvYCJEBA_rJbJa5oqFKAnCCgnAlBjiOEFG8dRrKUCiSAgumQDFEoGEYC8YcO2feuNRoAB-0p46rvizGvH_YH4wlrKPa8tn9VVVbvjmW9bKvjceMOTbl-R88aXfXtD-cGVHx21P9u0dqbhq8rsiSeNL63pKXPyPeynvG1Lt-8znfgzdY059uI_6-a9vWXX1hxbGv_piG0fF5vZU7B-Wa5myTooEaY-mCIaDbnCIjZ5GBY4VSqiUOWhUdaQJTRgRZgJzEQEWmWFQigybaUSJtKZHLG7X25JRLtTU1amOe_-H5PfaaFjmw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS52108.2023.10282626
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9798350320107
EISSN 2153-7003
EndPage 363
ExternalDocumentID 10282626
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  funderid: 10.13039/100000006
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i204t-422a80c52d9ac66d24557e65c6a5faefe2a0f16b12b17085bd520db8f351a78b3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:10 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-422a80c52d9ac66d24557e65c6a5faefe2a0f16b12b17085bd520db8f351a78b3
PageCount 4
ParticipantIDs ieee_primary_10282626
PublicationCentury 2000
PublicationDate 2023-July-16
PublicationDateYYYYMMDD 2023-07-16
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-16
  day: 16
PublicationDecade 2020
PublicationTitle IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8879582
Snippet This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for...
SourceID ieee
SourceType Publisher
StartPage 360
SubjectTerms Bayesian Deep Learning
Computer architecture
Computer vision
Data augmentation
Deep learning
Geometry
Geoscience and remote sensing
Imaging
Imaging Artifacts
Synthetic Aperture Sonar
Title A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks
URI https://ieeexplore.ieee.org/document/10282626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1uoHjy18TffILXbm3Spu2xODcnOMRtsNtImlTErR1be5gn_3STtFUUBE9tAqElCfle8r33gtCN2kUIzBNiceEnlit9YjFhhxanASE67eWFWij8OKT3E_dh6k0rsbrRwkgpDflMtvWryeWLLC70UVlHB0OsEHgDNfwwLMVa9bJLVCizd9B1ZaLZGfSj59FIBSdbE7gwadeNf1yjYqJIbw8N6--X5JG3dpHzdvz-y5rx3z-4j1rfgj14-gpFB2hLpodou29u7d0coY8INF9wA1kKCvBBaVkMWQJaH5Kl8w1M1lJAl-UMouJlUQmSUhjXFq9r3XakYPsKBgu1BkGkppxWRUBX5obOlYKhH6iyXIL2_GBz9TAk83ULTXp349t7q7p6wXrFtptbLsYssGMPi5DFlAqsBs2X1Isp8xImE4mZnTiUO5g7vkJtXHjYFjxIiOcwP-DkGDXTLJUnCFRJUjtWG0cFB3yuHf6c0IvdONA5V4ecopbuyNmydNeY1X149kf9OdrV46nPVx16gZr5qpCXChjk_MpMiE8RQrcE
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1e8PLkbeLdT_C1s03atHsczrnpHOI22NtImlTErR2ue5hP_nS_ZKuiIPjUJhAISch3kpxzPkIu8RShqEyYI1WYOL4OmSOUW3Ekjxgzz15BxQiFH9q80fPv-kF_IVa3WhittSWf6bL5tW_5Koun5qrsygRDigh8mawisI74XK5VbLwMg5m7Ti4WNppXzdvqU6eD4ck1FC7KykXzH4lUbBypb5F20YM5feS1PM1lOX7_Zc747y5uk9K3ZA8ev4LRDlnS6S5Zu7V5e2d75KMKhjE4gywFhHwwNy2GLAGjEMnS4Qx6E62gJnIB1enzaCFJSqFbmLxOTNsOAvc3aI5wF4IqLjqji4Cazi2hKwVLQMCyHoNx_RBD_Fia-aREevWb7nXDWSRfcF6o6-eOT6mI3DigqiJizhXFaQs1D2IugkToRFPhJh6XHpVeiLhNqoC6SkYJCzwRRpLtk5U0S_UBASxp7sZ4dERAEErj8edVgtiPI_Pq6rFDUjIDORjP_TUGxRge_VF_TjYa3YfWoNVs3x-TTTO35rbV4ydkJX-b6lOECbk8s4vjE8-Nuk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2023+-+2023+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=A+Study+on+the+Effect+of+Commonly+Used+Data+Augmentation+Techniques+on+Sonar+Image+Artifact+Detection+Using+Deep+Neural+Networks&rft.au=Orescanin%2C+M.&rft.au=Harrington%2C+B.&rft.au=Olson%2C+D.&rft.au=Geilhufe%2C+M.&rft.date=2023-07-16&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=360&rft.epage=363&rft_id=info:doi/10.1109%2FIGARSS52108.2023.10282626&rft.externalDocID=10282626