A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks
This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augme...
Saved in:
Published in | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium pp. 360 - 363 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augmentations that violate the geometry and physics of SAS has not been fully explored. To address this gap, we developed a unique dataset for detecting imaging artifacts in SAS imagery with DL and trained a Bayesian neural network with a ResNet architecture using widely used augmentations in DL for computer vision, as well as common augmentations used in the SAS literature. The study shows that augmentations that violate the geometry and imaging physics of SAS can negatively impact supervised classification, but can sometimes improve performance. Overall, the study provides important insights into the impact of different types of augmentations on the performance of DL models in SAS applications. |
---|---|
AbstractList | This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for detecting imaging artifacts in Synthetic Aperture Sonar (SAS) imagery. Despite the popularity of using DL in the SAS community, the impact of augmentations that violate the geometry and physics of SAS has not been fully explored. To address this gap, we developed a unique dataset for detecting imaging artifacts in SAS imagery with DL and trained a Bayesian neural network with a ResNet architecture using widely used augmentations in DL for computer vision, as well as common augmentations used in the SAS literature. The study shows that augmentations that violate the geometry and imaging physics of SAS can negatively impact supervised classification, but can sometimes improve performance. Overall, the study provides important insights into the impact of different types of augmentations on the performance of DL models in SAS applications. |
Author | Orescanin, M. Geilhufe, M. Hansen, R. E. Harrington, B. Olson, D. Warakagoda, N. |
Author_xml | – sequence: 1 givenname: M. surname: Orescanin fullname: Orescanin, M. organization: Naval Postgraduate School,Monterey,CA,USA – sequence: 2 givenname: B. surname: Harrington fullname: Harrington, B. organization: Naval Postgraduate School,Monterey,CA,USA – sequence: 3 givenname: D. surname: Olson fullname: Olson, D. organization: Naval Postgraduate School,Monterey,CA,USA – sequence: 4 givenname: M. surname: Geilhufe fullname: Geilhufe, M. organization: Norwegian Defense Research Establishment,Kjeller,Norway – sequence: 5 givenname: R. E. surname: Hansen fullname: Hansen, R. E. organization: Norwegian Defense Research Establishment,Kjeller,Norway – sequence: 6 givenname: N. surname: Warakagoda fullname: Warakagoda, N. organization: Norwegian Defense Research Establishment,Kjeller,Norway |
BookMark | eNo1kEFPwkAUhFejiYD8Aw_rDyi-fcu222MDiCREEwtnsm3fQpVusd3GcPOnW6OeZiaZ-Q4zZFeudsTYvYCJEBA_rJbJa5oqFKAnCCgnAlBjiOEFG8dRrKUCiSAgumQDFEoGEYC8YcO2feuNRoAB-0p46rvizGvH_YH4wlrKPa8tn9VVVbvjmW9bKvjceMOTbl-R88aXfXtD-cGVHx21P9u0dqbhq8rsiSeNL63pKXPyPeynvG1Lt-8znfgzdY059uI_6-a9vWXX1hxbGv_piG0fF5vZU7B-Wa5myTooEaY-mCIaDbnCIjZ5GBY4VSqiUOWhUdaQJTRgRZgJzEQEWmWFQigybaUSJtKZHLG7X25JRLtTU1amOe_-H5PfaaFjmw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS52108.2023.10282626 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9798350320107 |
EISSN | 2153-7003 |
EndPage | 363 |
ExternalDocumentID | 10282626 |
Genre | orig-research |
GrantInformation_xml | – fundername: Office of Naval Research funderid: 10.13039/100000006 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i204t-422a80c52d9ac66d24557e65c6a5faefe2a0f16b12b17085bd520db8f351a78b3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:10 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-422a80c52d9ac66d24557e65c6a5faefe2a0f16b12b17085bd520db8f351a78b3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10282626 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-16 |
PublicationDateYYYYMMDD | 2023-07-16 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.8879582 |
Snippet | This paper presents an empirical study that evaluates the impact of different types of augmentations on the performance of Deep Learning (DL) models for... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 360 |
SubjectTerms | Bayesian Deep Learning Computer architecture Computer vision Data augmentation Deep learning Geometry Geoscience and remote sensing Imaging Imaging Artifacts Synthetic Aperture Sonar |
Title | A Study on the Effect of Commonly Used Data Augmentation Techniques on Sonar Image Artifact Detection Using Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/10282626 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1uoHjy18TffILXbm3Spu2xODcnOMRtsNtImlTErR1be5gn_3STtFUUBE9tAqElCfle8r33gtCN2kUIzBNiceEnlit9YjFhhxanASE67eWFWij8OKT3E_dh6k0rsbrRwkgpDflMtvWryeWLLC70UVlHB0OsEHgDNfwwLMVa9bJLVCizd9B1ZaLZGfSj59FIBSdbE7gwadeNf1yjYqJIbw8N6--X5JG3dpHzdvz-y5rx3z-4j1rfgj14-gpFB2hLpodou29u7d0coY8INF9wA1kKCvBBaVkMWQJaH5Kl8w1M1lJAl-UMouJlUQmSUhjXFq9r3XakYPsKBgu1BkGkppxWRUBX5obOlYKhH6iyXIL2_GBz9TAk83ULTXp349t7q7p6wXrFtptbLsYssGMPi5DFlAqsBs2X1Isp8xImE4mZnTiUO5g7vkJtXHjYFjxIiOcwP-DkGDXTLJUnCFRJUjtWG0cFB3yuHf6c0IvdONA5V4ecopbuyNmydNeY1X149kf9OdrV46nPVx16gZr5qpCXChjk_MpMiE8RQrcE |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1e8PLkbeLdT_C1s03atHsczrnpHOI22NtImlTErR2ue5hP_nS_ZKuiIPjUJhAISch3kpxzPkIu8RShqEyYI1WYOL4OmSOUW3Ekjxgzz15BxQiFH9q80fPv-kF_IVa3WhittSWf6bL5tW_5Koun5qrsygRDigh8mawisI74XK5VbLwMg5m7Ti4WNppXzdvqU6eD4ck1FC7KykXzH4lUbBypb5F20YM5feS1PM1lOX7_Zc747y5uk9K3ZA8ev4LRDlnS6S5Zu7V5e2d75KMKhjE4gywFhHwwNy2GLAGjEMnS4Qx6E62gJnIB1enzaCFJSqFbmLxOTNsOAvc3aI5wF4IqLjqji4Cazi2hKwVLQMCyHoNx_RBD_Fia-aREevWb7nXDWSRfcF6o6-eOT6mI3DigqiJizhXFaQs1D2IugkToRFPhJh6XHpVeiLhNqoC6SkYJCzwRRpLtk5U0S_UBASxp7sZ4dERAEErj8edVgtiPI_Pq6rFDUjIDORjP_TUGxRge_VF_TjYa3YfWoNVs3x-TTTO35rbV4ydkJX-b6lOECbk8s4vjE8-Nuk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IGARSS+2023+-+2023+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=A+Study+on+the+Effect+of+Commonly+Used+Data+Augmentation+Techniques+on+Sonar+Image+Artifact+Detection+Using+Deep+Neural+Networks&rft.au=Orescanin%2C+M.&rft.au=Harrington%2C+B.&rft.au=Olson%2C+D.&rft.au=Geilhufe%2C+M.&rft.date=2023-07-16&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=360&rft.epage=363&rft_id=info:doi/10.1109%2FIGARSS52108.2023.10282626&rft.externalDocID=10282626 |