Predicting Mechanical Properties of Carbon Nanotube (CNT) Images Using Multi-Layer Synthetic Finite Element Model Simulations

We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of m...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Conference on Image Processing (ICIP) pp. 3264 - 3268
Main Authors Safavigerdini, Kaveh, Nouduri, Koundinya, Surya, Ramakrishna, Reinhard, Andrew, Quinlan, Zach, Bunyak, Filiz, Maschmann, Matthew R., Palaniappan, Kannappan
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of multi-layer synthetic (MLS) or quasi-2.5D images which are generated by blending 2D synthetic images. The MLS images more closely resemble 3D synthetic and real scanning electron microscopy (SEM) images of CNTs but without the computational cost of performing expensive 3D simulations or experiments. Mechanical properties such as stiffness and buckling load for the MLS images are estimated using a physics-based model. The proposed deep learning architecture, CNTNeXt, builds upon our previous CNTNet neural network, using a ResNeXt feature representation followed by random forest regression estimator. Our machine learning approach for predicting CNT physical properties by utilizing a blended set of synthetic images is expected to outperform single synthetic image-based learning when it comes to predicting mechanical properties of real scanning electron microscopy images. This has the potential to accelerate understanding and control of CNT forest self-assembly for diverse applications.
AbstractList We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of multi-layer synthetic (MLS) or quasi-2.5D images which are generated by blending 2D synthetic images. The MLS images more closely resemble 3D synthetic and real scanning electron microscopy (SEM) images of CNTs but without the computational cost of performing expensive 3D simulations or experiments. Mechanical properties such as stiffness and buckling load for the MLS images are estimated using a physics-based model. The proposed deep learning architecture, CNTNeXt, builds upon our previous CNTNet neural network, using a ResNeXt feature representation followed by random forest regression estimator. Our machine learning approach for predicting CNT physical properties by utilizing a blended set of synthetic images is expected to outperform single synthetic image-based learning when it comes to predicting mechanical properties of real scanning electron microscopy images. This has the potential to accelerate understanding and control of CNT forest self-assembly for diverse applications.
Author Reinhard, Andrew
Quinlan, Zach
Bunyak, Filiz
Palaniappan, Kannappan
Safavigerdini, Kaveh
Surya, Ramakrishna
Nouduri, Koundinya
Maschmann, Matthew R.
Author_xml – sequence: 1
  givenname: Kaveh
  surname: Safavigerdini
  fullname: Safavigerdini, Kaveh
  organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA
– sequence: 2
  givenname: Koundinya
  surname: Nouduri
  fullname: Nouduri, Koundinya
  organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA
– sequence: 3
  givenname: Ramakrishna
  surname: Surya
  fullname: Surya, Ramakrishna
  organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA
– sequence: 4
  givenname: Andrew
  surname: Reinhard
  fullname: Reinhard, Andrew
  organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA
– sequence: 5
  givenname: Zach
  surname: Quinlan
  fullname: Quinlan, Zach
  organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA
– sequence: 6
  givenname: Filiz
  surname: Bunyak
  fullname: Bunyak, Filiz
  organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA
– sequence: 7
  givenname: Matthew R.
  surname: Maschmann
  fullname: Maschmann, Matthew R.
  organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA
– sequence: 8
  givenname: Kannappan
  surname: Palaniappan
  fullname: Palaniappan, Kannappan
  organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA
BookMark eNo1kLluAjEYhB0pKQLJG0SKy6RY4mMPu4xWQFYCggTUyMe_YGnXRl5TUOTdg3JUM9J8M8WM0K0PHhB6pmRCKZFvTd2sc8kLOWGE8QkljF0NuUEjWjFBpeBFeY--1hGsM8n5A16COSrvjOrwOoYTxORgwKHFtYo6eLxSPqSzBvxSr7avuOnV4Zrvhp_uuUsuW6gLRLy5-HSE5AyeOe8S4GkHPfiEl8FChzeuP3cqueCHB3TXqm6Axz8do91suq0_ssXnvKnfF5ljJE8ZFzkVtsglGABmaQGqFEKBKAtLdUWsqEBbbjS0ghh65aCystRFpVoNQvIxevrddQCwP0XXq3jZ_1_CvwEl9V33
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP49359.2023.10222020
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 1728198356
9781728198354
EndPage 3268
ExternalDocumentID 10222020
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i204t-38418d549ecee2d15ea688ae865d1b70d87ebd3cbef80c149ee7d96b57afbe893
IEDL.DBID RIE
IngestDate Wed Jan 10 09:27:14 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-38418d549ecee2d15ea688ae865d1b70d87ebd3cbef80c149ee7d96b57afbe893
PageCount 5
ParticipantIDs ieee_primary_10222020
PublicationCentury 2000
PublicationDate 2023-Oct.-8
PublicationDateYYYYMMDD 2023-10-08
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3315945
Snippet We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for...
SourceID ieee
SourceType Publisher
StartPage 3264
SubjectTerms Computational modeling
Forestry
Prediction of Mechanical Properties
Predictive models
Quasi-images
Random Forest
ResNeXt
Scanning electron microscopy
Self-assembly
SEM Images
Solid modeling
Three-dimensional displays
Title Predicting Mechanical Properties of Carbon Nanotube (CNT) Images Using Multi-Layer Synthetic Finite Element Model Simulations
URI https://ieeexplore.ieee.org/document/10222020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Hkr4m_ycGDHtqla9pk57KxiRuDbbDbaJpXGGo7tvag4P9uXtopCoK3UlIa8tK87zXfl4-Qu9T3TeJIDXLTvnZ4oM03F2vhaK-jRcIVVwFqh0fjcDDnj4tgUYvVrRYGACz5DFy8tHv5Ok9K_FXWttWJwTcN0jCVWyXWqjlbHuu2h9FwwlFp6qInuLtr_cM3xaaN_iEZ715YsUWe3bJQbvL-6yzGf_foiLS-FXp08pV7jskeZCdkH3020bztlHxMNrgDg5xmOgJU92Iw8JE1EqlhS_OURvFG5Rk1C2xelArofTSePdDhq1littRyCajV5zpPsQHmdPqWGbRoJhrtrxCp0l5FPafop_ZCp6vX2gps2yLzfm8WDZzaacFZdRgvHF9yT2pTKoLpd0d7AcShlDHIMNCeEkxLAUr7iYJUssQUVQBCd0MViDhVYCDPGWlmeQbnhKYCeIANBaRcalO4p0wzYAoY076IL0gLh3G5rg7TWO5G8PKP-1fkAKNZ0e6uSbPYlHBjcEChbm38PwFuq7ae
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Na9tAEF1MCk1P6YdLk7bpHlJIDlJW0sq7PvTk2FjxBwbbkJuj1Y7AJJGCLVNS6E_pX8lvy4xkuzSQo6E3IbQg7czuzGjfm8fYSRoEGDhSzNxsYB0ZWlxzsVWO9XyrEmmkCYk7PBg2ulN5eRVe1difLRcGAErwGbh0WZ7l2zxZ0a-y87I6wfxmjaHswcNPrNCWP6ILNOd33--0J62usxYRcOa-kIUTaOlpi1UQYDjwrRdC3NA6Bt0IrWeUsFqBsUFiINUiwXoBQNlmw4QqTg1o6rWEO_wrTDRCv6KHrVFinmieR61oJInb6pIKubt5v3-UWspA1Tlgj5tPrPApN-6qMG7y61n3x_92Dt6y-l8OIh9to-s7VoPsPXtNSqIkT_eB_R4t6IyJUNt8AMRfJnejIfcEFYclz1PeihcmzziGkLxYGeCnreHkjEd3uIkueYmW4CUD2enHWHrw8UOG-TAuJd6ZUy7O2xW4npNi3C0fz-_WYmfLOpvuZAo-sr0sz-AT46kCGdKDClKpLRg_FVaAMCCEDVR8yOpkttl91S5ktrHY0Qv3v7H97mTQn_WjYe8ze0OeVIEMv7C9YrGCr5j1FOa49D3Orndt6CedwxcX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Predicting+Mechanical+Properties+of+Carbon+Nanotube+%28CNT%29+Images+Using+Multi-Layer+Synthetic+Finite+Element+Model+Simulations&rft.au=Safavigerdini%2C+Kaveh&rft.au=Nouduri%2C+Koundinya&rft.au=Surya%2C+Ramakrishna&rft.au=Reinhard%2C+Andrew&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3264&rft.epage=3268&rft_id=info:doi/10.1109%2FICIP49359.2023.10222020&rft.externalDocID=10222020