Predicting Mechanical Properties of Carbon Nanotube (CNT) Images Using Multi-Layer Synthetic Finite Element Model Simulations
We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of m...
Saved in:
Published in | 2023 IEEE International Conference on Image Processing (ICIP) pp. 3264 - 3268 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of multi-layer synthetic (MLS) or quasi-2.5D images which are generated by blending 2D synthetic images. The MLS images more closely resemble 3D synthetic and real scanning electron microscopy (SEM) images of CNTs but without the computational cost of performing expensive 3D simulations or experiments. Mechanical properties such as stiffness and buckling load for the MLS images are estimated using a physics-based model. The proposed deep learning architecture, CNTNeXt, builds upon our previous CNTNet neural network, using a ResNeXt feature representation followed by random forest regression estimator. Our machine learning approach for predicting CNT physical properties by utilizing a blended set of synthetic images is expected to outperform single synthetic image-based learning when it comes to predicting mechanical properties of real scanning electron microscopy images. This has the potential to accelerate understanding and control of CNT forest self-assembly for diverse applications. |
---|---|
AbstractList | We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for artificial intelligence (AI)-based materials discovery. Our approach incorporates an innovative data augmentation technique that involves the use of multi-layer synthetic (MLS) or quasi-2.5D images which are generated by blending 2D synthetic images. The MLS images more closely resemble 3D synthetic and real scanning electron microscopy (SEM) images of CNTs but without the computational cost of performing expensive 3D simulations or experiments. Mechanical properties such as stiffness and buckling load for the MLS images are estimated using a physics-based model. The proposed deep learning architecture, CNTNeXt, builds upon our previous CNTNet neural network, using a ResNeXt feature representation followed by random forest regression estimator. Our machine learning approach for predicting CNT physical properties by utilizing a blended set of synthetic images is expected to outperform single synthetic image-based learning when it comes to predicting mechanical properties of real scanning electron microscopy images. This has the potential to accelerate understanding and control of CNT forest self-assembly for diverse applications. |
Author | Reinhard, Andrew Quinlan, Zach Bunyak, Filiz Palaniappan, Kannappan Safavigerdini, Kaveh Surya, Ramakrishna Nouduri, Koundinya Maschmann, Matthew R. |
Author_xml | – sequence: 1 givenname: Kaveh surname: Safavigerdini fullname: Safavigerdini, Kaveh organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA – sequence: 2 givenname: Koundinya surname: Nouduri fullname: Nouduri, Koundinya organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA – sequence: 3 givenname: Ramakrishna surname: Surya fullname: Surya, Ramakrishna organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA – sequence: 4 givenname: Andrew surname: Reinhard fullname: Reinhard, Andrew organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA – sequence: 5 givenname: Zach surname: Quinlan fullname: Quinlan, Zach organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA – sequence: 6 givenname: Filiz surname: Bunyak fullname: Bunyak, Filiz organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA – sequence: 7 givenname: Matthew R. surname: Maschmann fullname: Maschmann, Matthew R. organization: University of Missouri-Columbia,Department of Mechanical & Aerospace Engineering,Columbia,Missouri,USA – sequence: 8 givenname: Kannappan surname: Palaniappan fullname: Palaniappan, Kannappan organization: University of Missouri-Columbia,Department of Electrical Engineering and Computer Science,Columbia,Missouri,USA |
BookMark | eNo1kLluAjEYhB0pKQLJG0SKy6RY4mMPu4xWQFYCggTUyMe_YGnXRl5TUOTdg3JUM9J8M8WM0K0PHhB6pmRCKZFvTd2sc8kLOWGE8QkljF0NuUEjWjFBpeBFeY--1hGsM8n5A16COSrvjOrwOoYTxORgwKHFtYo6eLxSPqSzBvxSr7avuOnV4Zrvhp_uuUsuW6gLRLy5-HSE5AyeOe8S4GkHPfiEl8FChzeuP3cqueCHB3TXqm6Axz8do91suq0_ssXnvKnfF5ljJE8ZFzkVtsglGABmaQGqFEKBKAtLdUWsqEBbbjS0ghh65aCystRFpVoNQvIxevrddQCwP0XXq3jZ_1_CvwEl9V33 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP49359.2023.10222020 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISBN | 1728198356 9781728198354 |
EndPage | 3268 |
ExternalDocumentID | 10222020 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i204t-38418d549ecee2d15ea688ae865d1b70d87ebd3cbef80c149ee7d96b57afbe893 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:27:14 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i204t-38418d549ecee2d15ea688ae865d1b70d87ebd3cbef80c149ee7d96b57afbe893 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10222020 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-8 |
PublicationDateYYYYMMDD | 2023-10-08 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.3315945 |
Snippet | We present a pipeline for predicting mechanical properties of vertically-oriented carbon nanotube (CNT) forest images using a deep learning model for... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3264 |
SubjectTerms | Computational modeling Forestry Prediction of Mechanical Properties Predictive models Quasi-images Random Forest ResNeXt Scanning electron microscopy Self-assembly SEM Images Solid modeling Three-dimensional displays |
Title | Predicting Mechanical Properties of Carbon Nanotube (CNT) Images Using Multi-Layer Synthetic Finite Element Model Simulations |
URI | https://ieeexplore.ieee.org/document/10222020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Hkr4m_ycGDHtqla9pk57KxiRuDbbDbaJpXGGo7tvag4P9uXtopCoK3UlIa8tK87zXfl4-Qu9T3TeJIDXLTvnZ4oM03F2vhaK-jRcIVVwFqh0fjcDDnj4tgUYvVrRYGACz5DFy8tHv5Ok9K_FXWttWJwTcN0jCVWyXWqjlbHuu2h9FwwlFp6qInuLtr_cM3xaaN_iEZ715YsUWe3bJQbvL-6yzGf_foiLS-FXp08pV7jskeZCdkH3020bztlHxMNrgDg5xmOgJU92Iw8JE1EqlhS_OURvFG5Rk1C2xelArofTSePdDhq1littRyCajV5zpPsQHmdPqWGbRoJhrtrxCp0l5FPafop_ZCp6vX2gps2yLzfm8WDZzaacFZdRgvHF9yT2pTKoLpd0d7AcShlDHIMNCeEkxLAUr7iYJUssQUVQBCd0MViDhVYCDPGWlmeQbnhKYCeIANBaRcalO4p0wzYAoY076IL0gLh3G5rg7TWO5G8PKP-1fkAKNZ0e6uSbPYlHBjcEChbm38PwFuq7ae |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Na9tAEF1MCk1P6YdLk7bpHlJIDlJW0sq7PvTk2FjxBwbbkJuj1Y7AJJGCLVNS6E_pX8lvy4xkuzSQo6E3IbQg7czuzGjfm8fYSRoEGDhSzNxsYB0ZWlxzsVWO9XyrEmmkCYk7PBg2ulN5eRVe1difLRcGAErwGbh0WZ7l2zxZ0a-y87I6wfxmjaHswcNPrNCWP6ILNOd33--0J62usxYRcOa-kIUTaOlpi1UQYDjwrRdC3NA6Bt0IrWeUsFqBsUFiINUiwXoBQNlmw4QqTg1o6rWEO_wrTDRCv6KHrVFinmieR61oJInb6pIKubt5v3-UWspA1Tlgj5tPrPApN-6qMG7y61n3x_92Dt6y-l8OIh9to-s7VoPsPXtNSqIkT_eB_R4t6IyJUNt8AMRfJnejIfcEFYclz1PeihcmzziGkLxYGeCnreHkjEd3uIkueYmW4CUD2enHWHrw8UOG-TAuJd6ZUy7O2xW4npNi3C0fz-_WYmfLOpvuZAo-sr0sz-AT46kCGdKDClKpLRg_FVaAMCCEDVR8yOpkttl91S5ktrHY0Qv3v7H97mTQn_WjYe8ze0OeVIEMv7C9YrGCr5j1FOa49D3Orndt6CedwxcX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Predicting+Mechanical+Properties+of+Carbon+Nanotube+%28CNT%29+Images+Using+Multi-Layer+Synthetic+Finite+Element+Model+Simulations&rft.au=Safavigerdini%2C+Kaveh&rft.au=Nouduri%2C+Koundinya&rft.au=Surya%2C+Ramakrishna&rft.au=Reinhard%2C+Andrew&rft.date=2023-10-08&rft.pub=IEEE&rft.spage=3264&rft.epage=3268&rft_id=info:doi/10.1109%2FICIP49359.2023.10222020&rft.externalDocID=10222020 |