Unbiased Decision-Making Framework in Long-Video Macro & Micro-Expression Spotting

Spotting macro and micro expressions proves more demanding than subsequent tasks such as recognizing or classifying expressions. This intricate process entails pinpointing the precise commencement, conclusion, and pinnacle frames of brief facial expressions within video footage. Our study delves int...

Full description

Saved in:
Bibliographic Details
Published in2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) pp. 84 - 89
Main Authors Tan, Pei-Sze, Rajanala, Sailaja, Pal, Arghya, Phan, Raphael C.-W., Ong, Huey-Fang
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spotting macro and micro expressions proves more demanding than subsequent tasks such as recognizing or classifying expressions. This intricate process entails pinpointing the precise commencement, conclusion, and pinnacle frames of brief facial expressions within video footage. Our study delves into the susceptibility of expression spotting to biases ingrained in deep learning models, often stemming from a lack of diversity in the training data. These biases manifest diversely, such as an overemphasis on specific expression categories, genders, or racial backgrounds, leading to subpar performance on other samples. These spurious biases in deep learning models adversely affect classification accuracy. Our work aims to unearth common biases in micro and macro expression spotting and suggests methods to detect them. In addressing this challenge, we introduce a causal graph that elucidates the connections among a trained deep learning model, the feature space it acquires, and the resulting outcomes. This causal graph plays a pivotal role in pinpointing potential origins of bias during the training phase. We utilise counterfactual inputs to evaluate model biases, providing advantages in terms of computational efficiency and interpretability when contrasted with in-training debiasing approaches. This makes counterfactual debiasing a promising avenue for addressing biases in machine learning models. Experimental results underscore the effectiveness of this approach in successfully mitigating biases in several state-of-the-art macro and micro-expression spotting methods.
AbstractList Spotting macro and micro expressions proves more demanding than subsequent tasks such as recognizing or classifying expressions. This intricate process entails pinpointing the precise commencement, conclusion, and pinnacle frames of brief facial expressions within video footage. Our study delves into the susceptibility of expression spotting to biases ingrained in deep learning models, often stemming from a lack of diversity in the training data. These biases manifest diversely, such as an overemphasis on specific expression categories, genders, or racial backgrounds, leading to subpar performance on other samples. These spurious biases in deep learning models adversely affect classification accuracy. Our work aims to unearth common biases in micro and macro expression spotting and suggests methods to detect them. In addressing this challenge, we introduce a causal graph that elucidates the connections among a trained deep learning model, the feature space it acquires, and the resulting outcomes. This causal graph plays a pivotal role in pinpointing potential origins of bias during the training phase. We utilise counterfactual inputs to evaluate model biases, providing advantages in terms of computational efficiency and interpretability when contrasted with in-training debiasing approaches. This makes counterfactual debiasing a promising avenue for addressing biases in machine learning models. Experimental results underscore the effectiveness of this approach in successfully mitigating biases in several state-of-the-art macro and micro-expression spotting methods.
Author Tan, Pei-Sze
Ong, Huey-Fang
Rajanala, Sailaja
Pal, Arghya
Phan, Raphael C.-W.
Author_xml – sequence: 1
  givenname: Pei-Sze
  surname: Tan
  fullname: Tan, Pei-Sze
  organization: Monash University,CyPhi (ΨΦ) AI Lab, School of Information Technology
– sequence: 2
  givenname: Sailaja
  surname: Rajanala
  fullname: Rajanala, Sailaja
  email: sailaja.rajanala@monash.edu
  organization: Monash University,CyPhi (ΨΦ) AI Lab, School of Information Technology
– sequence: 3
  givenname: Arghya
  surname: Pal
  fullname: Pal, Arghya
  email: arghya.pal@monash.edu
  organization: Monash University,CyPhi (ΨΦ) AI Lab, School of Information Technology
– sequence: 4
  givenname: Raphael C.-W.
  surname: Phan
  fullname: Phan, Raphael C.-W.
  organization: Monash University,CyPhi (ΨΦ) AI Lab, School of Information Technology
– sequence: 5
  givenname: Huey-Fang
  surname: Ong
  fullname: Ong, Huey-Fang
  organization: Monash University,CyPhi (ΨΦ) AI Lab, School of Information Technology
BookMark eNo1kMFOAjEURavRRET-wEUXxl3xta-d0uUEQUkgEhG3pO10SEVaMjOJ-vdi1NXZ3HMW95KcpZwCITcchpyDuSuXq9myLFdjNVJcDwUIHHJArlGKEzIw2oxQAQIUGk9JTxQSGBwHF2TQtm8AgAJQGuiR53Vy0bahovfBxzbmxBZ2F9OWThu7Dx-52dGY6DynLXuNVch0YX2T6S1dxCPZ5PPQhPbHo6tD7rqjeUXOa_vehsEf-2Q9nbyMH9n86WE2LucsCpAdQ6mEroSUnnNnTSW1k077Wgg0xtUKvRCFD4VTnBdQ1LX3EJQOwkjrjEDsk-vfbgwhbA5N3Nvma_N_A34DmINULg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPAASC58517.2023.10317342
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Explore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Explore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350300673
EISSN 2640-0103
EndPage 89
ExternalDocumentID 10317342
Genre orig-research
GrantInformation_xml – fundername: Ministry of Higher Education
  funderid: 10.13039/501100002385
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i204t-34527d244c11ba9d47b4b7cf22399bf53c226ce6b511606ffcc0e57e294ab9233
IEDL.DBID RIE
IngestDate Wed Jun 26 19:23:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-34527d244c11ba9d47b4b7cf22399bf53c226ce6b511606ffcc0e57e294ab9233
PageCount 6
ParticipantIDs ieee_primary_10317342
PublicationCentury 2000
PublicationDate 2023-Oct.-31
PublicationDateYYYYMMDD 2023-10-31
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-31
  day: 31
PublicationDecade 2020
PublicationTitle 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
PublicationTitleAbbrev APSIPA ASC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203490
Score 1.9034796
Snippet Spotting macro and micro expressions proves more demanding than subsequent tasks such as recognizing or classifying expressions. This intricate process entails...
SourceID ieee
SourceType Publisher
StartPage 84
SubjectTerms Computational modeling
Decision making
Deep learning
Graphical models
Information processing
Training
Training data
Title Unbiased Decision-Making Framework in Long-Video Macro & Micro-Expression Spotting
URI https://ieeexplore.ieee.org/document/10317342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26g3hSceJvchje0rVp2izHMTdU7BjOyW6j-ZJIEdohHYh_vUl_TBQEb6WHEhKa977kve8h1KNpnFoebv9vAEGYEYrIgaHEj1PgKqQA0hWKyTS-W7CHZbRszOqVF0ZrXYnPtOceq7t8VcDGHZX1XSQBD5ndcXe5ELVZa3ugElLXasXfQ72mj2Z_OJvfz4bD-chdfXHPBYV77Sd-hKlUWDI5QNN2FLWE5M3blNKDz18NGv89zEPU_bbt4dkWkI7Qjs6P0dMil5mFKoVvmzgdklQJVHjS6rJwluPHIn8lL5nSBU5SuznjG5w4rR4ZfzRS2RzP10Wlku6ixWT8PLojTZACyajPShKyiHJlgRyCQKZCMS6Z5GCoM7ZKE4VgSRjoWFr2ZQsaYwB8HXFNBUulZYDhCerkRa5PEbYFkAU7GAijNNMiSDmzFCMWxugggjg8Q103Iat13Stj1c7F-R_vL9C-W5caDS5Rp3zf6CsL86W8rpb3C86vpd0
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA0yQT2pOPG3OQxv6bo0bdbjmI5N1zHcJruN5ksiRWiHdCD-9Sb9MVEQvJUeSkho3vuS976HUIvGQWx4uPm_AULCdCiJ6GpK3CAGLj0KIGyhGE2C4YI9Lv1lZVYvvDBKqUJ8phz7WNzlyww29qisbSMJuMfMjrvrW2JR2rW2Ryoetc1W3D3UqjpptnvT2Wja68369vKLOzYq3Kk_8iNOpUCTwSGa1OMoRSRvziYXDnz-atH474Eeoea3cQ9Pt5B0jHZUeoKeF6lIDFhJfF8F6pCoyKDCg1qZhZMUj7P0lbwkUmU4is32jO9wZNV65OGjEsumeLbOCp10Ey0GD_P-kFRRCiShLsuJx3zKpYFy6HREHErGBRMcNLXWVqF9DwwNAxUIw79MSaM1gKt8rmjIYmE4oHeKGmmWqjOETQlk4A66oZaKqbATc2ZIRhBqrTo-BN45atoJWa3Lbhmrei4u_nh_i_aH82i8Go8mT5fowK5RiQ1XqJG_b9S1Af1c3BRL_QWxgqkq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Asia+Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+%28APSIPA+ASC%29&rft.atitle=Unbiased+Decision-Making+Framework+in+Long-Video+Macro+%26+Micro-Expression+Spotting&rft.au=Tan%2C+Pei-Sze&rft.au=Rajanala%2C+Sailaja&rft.au=Pal%2C+Arghya&rft.au=Phan%2C+Raphael+C.-W.&rft.date=2023-10-31&rft.pub=IEEE&rft.eissn=2640-0103&rft.spage=84&rft.epage=89&rft_id=info:doi/10.1109%2FAPSIPAASC58517.2023.10317342&rft.externalDocID=10317342