Creating an Explainable Intrusion Detection System Using Self Organizing Maps

Modern Artificial Intelligence (AI) enabled Intrusion Detection Systems (IDS) are complex black boxes. This means that a security analyst will have little to no explanation or clarification on why an IDS model made a particular prediction. A potential solution to this problem is to research and deve...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 404 - 412
Main Authors Ables, Jesse, Kirby, Thomas, Anderson, William, Mittal, Sudip, Rahimi, Shahram, Banicescu, Ioana, Seale, Maria
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022255

Cover

Abstract Modern Artificial Intelligence (AI) enabled Intrusion Detection Systems (IDS) are complex black boxes. This means that a security analyst will have little to no explanation or clarification on why an IDS model made a particular prediction. A potential solution to this problem is to research and develop Explainable Intrusion Detection Systems (X-IDS) based on current capabilities in Explainable Artificial Intelligence (XAI). In this paper, we create a novel X-IDS architecture featuring a Self Organizing Map (SOM) that is capable of producing explanatory visualizations. We leverage SOM's explainability to create both global and local explanations. An analyst can use global explanations to get a general idea of how a particular IDS model computes predictions. Local explanations are generated for individual datapoints to explain why a certain prediction value was computed. Furthermore, our SOM based X-IDS was evaluated on both explanation generation and traditional accuracy tests using the NSL-KDD and the CIC-IDS-2017 datasets. This focus on explainability along with building an accurate IDS sets us apart from other studies.
AbstractList Modern Artificial Intelligence (AI) enabled Intrusion Detection Systems (IDS) are complex black boxes. This means that a security analyst will have little to no explanation or clarification on why an IDS model made a particular prediction. A potential solution to this problem is to research and develop Explainable Intrusion Detection Systems (X-IDS) based on current capabilities in Explainable Artificial Intelligence (XAI). In this paper, we create a novel X-IDS architecture featuring a Self Organizing Map (SOM) that is capable of producing explanatory visualizations. We leverage SOM's explainability to create both global and local explanations. An analyst can use global explanations to get a general idea of how a particular IDS model computes predictions. Local explanations are generated for individual datapoints to explain why a certain prediction value was computed. Furthermore, our SOM based X-IDS was evaluated on both explanation generation and traditional accuracy tests using the NSL-KDD and the CIC-IDS-2017 datasets. This focus on explainability along with building an accurate IDS sets us apart from other studies.
Author Ables, Jesse
Rahimi, Shahram
Anderson, William
Banicescu, Ioana
Mittal, Sudip
Seale, Maria
Kirby, Thomas
Author_xml – sequence: 1
  givenname: Jesse
  surname: Ables
  fullname: Ables, Jesse
  email: jha92@msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 2
  givenname: Thomas
  surname: Kirby
  fullname: Kirby, Thomas
  email: tmk169@msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 3
  givenname: William
  surname: Anderson
  fullname: Anderson, William
  email: wha41@msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 4
  givenname: Sudip
  surname: Mittal
  fullname: Mittal, Sudip
  email: mittal@cse.msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 5
  givenname: Shahram
  surname: Rahimi
  fullname: Rahimi, Shahram
  email: rahimi@cse.msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 6
  givenname: Ioana
  surname: Banicescu
  fullname: Banicescu, Ioana
  email: ioana@cse.msstate.edu
  organization: Mississippi State University,Department of Computer Science & Engineering,Mississippi,USA
– sequence: 7
  givenname: Maria
  surname: Seale
  fullname: Seale, Maria
  email: maria.a.seale@erdc.dren.mil
  organization: U.S Army Engineer Research and Development Center,Vicksburg,Mississippi,USA
BookMark eNo1j99KwzAUxiPohc69gWBeoDUnadrmUurUwsYu6q7HaXoyAl1W2gjOp3dFvfn-wI8Pvjt2HU6BGHsEkQII89Q0Va1BKEilkDIFcVGp9RVbmqKEPNdZWeSluWWbaiSMPhw4Br76Gnr0AdueeB3i-Dn5U-AvFMnGOTXnKdKR76aZb6h3fDseMPjvuW9wmO7ZjcN-ouWfL9judfVRvSfr7VtdPa8TL0UWE6VEZstMuqxQJFsLLVnUKKQDZctSW2O7ojMtdAoMKSTRASlnC7gQOTq1YA-_u56I9sPojzie9_8v1Q_wlU1M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022255
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 412
ExternalDocumentID 10022255
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Defense
  grantid: W912HZ-21-C0058
  funderid: 10.13039/100000005
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-3304c842f473e2bc1beca5a02f13c885c9cd7d9b1d319e3ae0d1e3fc712f16af3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-3304c842f473e2bc1beca5a02f13c885c9cd7d9b1d319e3ae0d1e3fc712f16af3
PageCount 9
ParticipantIDs ieee_primary_10022255
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8732147
Snippet Modern Artificial Intelligence (AI) enabled Intrusion Detection Systems (IDS) are complex black boxes. This means that a security analyst will have little to...
SourceID ieee
SourceType Publisher
StartPage 404
SubjectTerms Analytical models
Computational modeling
Computer architecture
Intrusion detection
Predictive models
Self-organizing feature maps
Visualization
Title Creating an Explainable Intrusion Detection System Using Self Organizing Maps
URI https://ieeexplore.ieee.org/document/10022255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMaD28mTihO_ycFruyRN2_RcHZuwIczBbiMfb0SUbGB32V9vknaKguCtLYG2edu-edPn9wShOyOU4haqJLdW-gLF16yy1DYBTRQXFeElCbzzdFaMF_xxmS87WD2yMAAQxWeQhs34L9-s9TZMlQ1pRDfzvId6_jlrYa1Os0VJNZzP60kwiAtlH2PpvvWPdVNi2hgdodn-hK1a5C3dNirVu19ejP--omM0-Cb08NNX7jlBB-BO0bSOI0D3gqXDQVzXkVF44gJa4SOA76GJ2iuHW6tyHCUDeA7vFndYZtifys3HAC1GD8_1OOmWS0heGeFNEmYmtODM8jIDpjT14ZG5JMzSTAuR60qb0lSKGv_aQSaBGAqZ1SX1LQppszPUd2sH5wgX3PihQ0Egq4LZjBBccuO_BQXVzDDgF2gQ-mK1aR0xVvtuuPzj-BU6DCGJMhB-jfr-puHGJ_NG3cYgfgJYEKBE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeDzoOeVJz42xy8tkvSpD_OU9l0HcI22G3kx4uI0g3sLv71JmmnKAje2hJoeY_25aXfzzcI3ZhcKW6hiIS10jUormeVmbYRaKJ4XhCeEc87l-N0MOMPczFvYfXAwgBAEJ9B7A_Dv3yz1Gu_VNajAd0UYhvtuMLPRYNrtaotSoreZNIfeos43_gxFm_G_9g5JRSO-3003tyy0Yu8xutaxfrjlxvjv5_pAHW_GT389FV9DtEWVEeo7Ic5YPWMZYW9vK5lo_Cw8nCFywG-hTqoryrcmJXjIBrAE3izuAUz_XkpV-9dNLu_m_YHUbthQvTCCK8jvzahc84szxJgSlOXICkkYZYmOs-FLrTJTKGocS8eJBKIoZBYnVE3IpU2OUadalnBCcIpN27ykBJICm83k-dccuO-BinVzDDgp6jrY7FYNZ4Yi00Yzv64fo12B9NytBgNx4_naM-nJ4hC-AXquADApSvttboKCf0E7gCjkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Creating+an+Explainable+Intrusion+Detection+System+Using+Self+Organizing+Maps&rft.au=Ables%2C+Jesse&rft.au=Kirby%2C+Thomas&rft.au=Anderson%2C+William&rft.au=Mittal%2C+Sudip&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=404&rft.epage=412&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022255&rft.externalDocID=10022255