SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition

Physics-informed neural networks (PINNs) have attracted significant attention for solving partial differential equations (PDEs) in recent years because they alleviate the curse of dimensionality that appears in traditional methods. However, the most disadvantage of PINNs is that one neural network c...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1443 - 1450
Main Authors Gao, Yihang, Cheung, Ka Chun, Ng, Michael K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022281

Cover

Loading…
Abstract Physics-informed neural networks (PINNs) have attracted significant attention for solving partial differential equations (PDEs) in recent years because they alleviate the curse of dimensionality that appears in traditional methods. However, the most disadvantage of PINNs is that one neural network corresponds to one PDE. In practice, we usually need to solve a class of PDEs, not just one. With the explosive growth of deep learning, many useful techniques in general deep learning tasks are also suitable for PINNs. Transfer learning methods may reduce the cost for PINNs in solving a class of PDEs. In this paper, we proposed a transfer learning method of PINNs via keeping singular vectors and optimizing singular values (namely SVD-PINNs). Numerical experiments on high dimensional PDEs (10-d linear parabolic equations and l0-d Allen-Cahn equations) show that SVD-PINNs work for solving a class of PDEs with different but close right-hand-side functions.
AbstractList Physics-informed neural networks (PINNs) have attracted significant attention for solving partial differential equations (PDEs) in recent years because they alleviate the curse of dimensionality that appears in traditional methods. However, the most disadvantage of PINNs is that one neural network corresponds to one PDE. In practice, we usually need to solve a class of PDEs, not just one. With the explosive growth of deep learning, many useful techniques in general deep learning tasks are also suitable for PINNs. Transfer learning methods may reduce the cost for PINNs in solving a class of PDEs. In this paper, we proposed a transfer learning method of PINNs via keeping singular vectors and optimizing singular values (namely SVD-PINNs). Numerical experiments on high dimensional PDEs (10-d linear parabolic equations and l0-d Allen-Cahn equations) show that SVD-PINNs work for solving a class of PDEs with different but close right-hand-side functions.
Author Ng, Michael K.
Cheung, Ka Chun
Gao, Yihang
Author_xml – sequence: 1
  givenname: Yihang
  surname: Gao
  fullname: Gao, Yihang
  email: gaoyh@connect.hku.hk
  organization: The University of Hong Kong,Department of Mathematics,Hong Kong SAR
– sequence: 2
  givenname: Ka Chun
  surname: Cheung
  fullname: Cheung, Ka Chun
  email: chcheung@nvidia.com
  organization: Hong Kong Baptist University and NVIDIA,Department of Mathematics,Hong Kong SAR
– sequence: 3
  givenname: Michael K.
  surname: Ng
  fullname: Ng, Michael K.
  email: mng@maths.hku.hk
  organization: The University of Hong Kong,Institute of Data Science and Department of Mathematics,Hong Kong SAR
BookMark eNo1j11LwzAYhSPohc79A8H8gdZ8tU28k05nYcxB527Ha_tWg20ykk7Zv7egwuE8Nw8HzhU5d94hIbecpZwzc1fXZZVxJnkqmBApZ1MLzc_I3BSa53mmdJFrc0mg3i2STbVex3u6DeBih4GuEIKz7p36jm4-TtE2Malc58OALV3jMUA_Yfz24TPSLwu0nuRjD4HuoD8iXWDjh4OPdrTeXZOLDvqI8z_OyOvT47Z8TlYvy6p8WCVWMDUmkkmtWsYaybHQOTCuhBEttK1U2MgpxRsokIXoTJYpw7SGFgoOyhilhZYzcvO7axFxfwh2gHDa_z-XP1osUrQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022281
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 1450
ExternalDocumentID 10022281
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-30384d00c31e786a014292dadd34ec3ec37ba4a372f95549088ada71a49948283
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-30384d00c31e786a014292dadd34ec3ec37ba4a372f95549088ada71a49948283
PageCount 8
ParticipantIDs ieee_primary_10022281
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8802384
Snippet Physics-informed neural networks (PINNs) have attracted significant attention for solving partial differential equations (PDEs) in recent years because they...
SourceID ieee
SourceType Publisher
StartPage 1443
SubjectTerms Costs
Deep learning
Explosives
Neural networks
Partial differential equations
Physics Informed Neural Networks
Singular Value Decomposition
Task analysis
Transfer learning
Title SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition
URI https://ieeexplore.ieee.org/document/10022281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB6_pmiZtU6-bYwoOoW7sNpLmqwzHJq714F_vl7RTFASh0FK-0pKUvL7mvRdCrpMYZBrbmCleKiYFWJYJblnEhVYpDokK3IzuwzgZTeT9LJ61ZnXvhQEALz6DwB36uXy7Lmr3q6zHvXXTGa138T1rzFqtZouHWS_P-3cuIM7RvigKttU_1k3xsDHcJ-PtDRu1yEtQVyYoPn5lMf77iQ5I99uhRx-_sOeQ7MDqiOh8OmBI08ebG-oxCCtpG6D6TNcl9XLPYsMaDxJY6qI59BJ3Xgu-oe8LTXMsdtpUOtXLGugAnOq8lXZ1yWR4-9QfsXYJBbaIQlkxBCglbRgWgkOqEo2EKMoii4OakFAI3FKjpRZpVGb4YeFET9rqlGskQhLJmDgmndV6BSeEIp7pVIcWhFF4baGy0FiVGJHERpTcnpKua5_5a5OSMd82zdkf58_JnusmLw2RF6RTvdVwiQBfmSvfsZ8PIaWh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA0yD3pSceJvc_Carm3SNvW6OTbditBt7DbS5qsMxyZu9eBf75e0UxQEodBSvtKQQF5f894LIbdhACIKdMCkV0gmOGgWc08z3-NKRjglSjArusMk7I3FwzSY1mZ164UBACs-A8dc2rV8vcpL86us5VnrpjFa7yLwi6Cya9WqLc-NW2na7puIOEP8fN_Z1v_YOcUCR_eAJNtXVnqRF6fcZE7-8SuN8d9tOiTNb48effpCnyOyA8tjotJJhyFRT9Z31KIQVtI6QvWZrgpqBZ_5mlUuJNDUhHOoBZ6sGnxN3-eKplhs1Kl0ohYl0A4Y3Xkt7mqScfd-1O6xehMFNvddsWEIUVJo1825B5EMFVIiP_Y1TmtcQM7xiDIlFI_8IsZPCyN7UlpFnkIqJJCO8RPSWK6WcEooIpqKlKuBZxKfzWXsZlqGGQ-DjBeePiNN0z-z1yonY7btmvM_7t-Qvd5oOJgN-snjBdk3Q2aFIuKSNDZvJVwh3G-yazvIn-qrqO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=SVD-PINNs%3A+Transfer+Learning+of+Physics-Informed+Neural+Networks+via+Singular+Value+Decomposition&rft.au=Gao%2C+Yihang&rft.au=Cheung%2C+Ka+Chun&rft.au=Ng%2C+Michael+K.&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=1443&rft.epage=1450&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022281&rft.externalDocID=10022281