Label Flipping Data Poisoning Attack Against Wearable Human Activity Recognition System

Human Activity Recognition (HAR) is a problem of interpreting sensor data to human movement using an efficient machine learning (ML) approach. The HAR systems rely on data from untrusted users, making them susceptible to data poisoning attacks. In a poisoning attack, attackers manipulate the sensor...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 908 - 914
Main Authors Shahid, Abdur R., Imteaj, Ahmed, Wu, Peter Y., Igoche, Diane A., Alam, Tauhidul
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022015

Cover

Abstract Human Activity Recognition (HAR) is a problem of interpreting sensor data to human movement using an efficient machine learning (ML) approach. The HAR systems rely on data from untrusted users, making them susceptible to data poisoning attacks. In a poisoning attack, attackers manipulate the sensor readings to contaminate the training set, misleading the HAR to produce erroneous outcomes. This paper presents the design of a label flipping data poisoning attack for a HAR system, where the label of a sensor reading is maliciously changed in the data collection phase. Due to high noise and uncertainty in the sensing environment, such an attack poses a severe threat to the recognition system. Besides, vulnerability to label flipping attacks is dangerous when activity recognition models are deployed in safety-critical applications. This paper shades light on how to carry out the attack in practice through smartphone-based sensor data collection applications. This is an earlier research work, to our knowledge, that explores attacking the HAR models via label flipping poisoning. We implement the proposed attack and test it on activity recognition models based on the following machine learning algorithms: multi-layer perceptron, decision tree, random forest, and XGBoost. Finally, we evaluate the effectiveness of a K-nearest neighbors (KNN)-based defense mechanism against the proposed attack.
AbstractList Human Activity Recognition (HAR) is a problem of interpreting sensor data to human movement using an efficient machine learning (ML) approach. The HAR systems rely on data from untrusted users, making them susceptible to data poisoning attacks. In a poisoning attack, attackers manipulate the sensor readings to contaminate the training set, misleading the HAR to produce erroneous outcomes. This paper presents the design of a label flipping data poisoning attack for a HAR system, where the label of a sensor reading is maliciously changed in the data collection phase. Due to high noise and uncertainty in the sensing environment, such an attack poses a severe threat to the recognition system. Besides, vulnerability to label flipping attacks is dangerous when activity recognition models are deployed in safety-critical applications. This paper shades light on how to carry out the attack in practice through smartphone-based sensor data collection applications. This is an earlier research work, to our knowledge, that explores attacking the HAR models via label flipping poisoning. We implement the proposed attack and test it on activity recognition models based on the following machine learning algorithms: multi-layer perceptron, decision tree, random forest, and XGBoost. Finally, we evaluate the effectiveness of a K-nearest neighbors (KNN)-based defense mechanism against the proposed attack.
Author Wu, Peter Y.
Alam, Tauhidul
Imteaj, Ahmed
Igoche, Diane A.
Shahid, Abdur R.
Author_xml – sequence: 1
  givenname: Abdur R.
  surname: Shahid
  fullname: Shahid, Abdur R.
  email: shahid@rmu.edu
  organization: Robert Morris University,Department of Computer and Information Systems,Moon,PA,USA
– sequence: 2
  givenname: Ahmed
  surname: Imteaj
  fullname: Imteaj, Ahmed
  email: ahmed.imteaj@siu.edu
  organization: Southern Illinois University,School of Computing,Carbondale,IL,USA
– sequence: 3
  givenname: Peter Y.
  surname: Wu
  fullname: Wu, Peter Y.
  email: wu@rmu.edu
  organization: Robert Morris University,Department of Computer and Information Systems,Moon,PA,USA
– sequence: 4
  givenname: Diane A.
  surname: Igoche
  fullname: Igoche, Diane A.
  email: igoche@rmu.edu
  organization: Robert Morris University,Department of Computer and Information Systems,Moon,PA,USA
– sequence: 5
  givenname: Tauhidul
  surname: Alam
  fullname: Alam, Tauhidul
  email: talam@lsus.edu
  organization: Louisiana State University Shreveport,Department of Computer Science,Shreveport,LA,USA
BookMark eNo1j99KwzAchSPohc69gWBeoPWXv00uS3VuUFCsssuRZmkJtmlpo9C3d0O9OYfv5vCdG3QZhuAQuieQEgL6oaqKnSDASEqB0pTAKYGIC7TWmSJSCq4yqfQ12pemdh3edH4cfWjxo4kGvw5-HsIZ8xiN_cR5a3yYI947M5m6c3j71ZuAcxv9t48LfnN2aIOPfgi4Wubo-lt01Zhuduu_XqGPzdN7sU3Kl-ddkZeJp8BjQqXI2NlYa6IaUWtimFWcKisor4-65pnRAIrJWjZgLaOKN5JR4TQcMwC2Qne_u945dxgn35tpOfz_ZT-6AU6U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022015
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 914
ExternalDocumentID 10022015
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i204t-2657311099918f5b91a3c8428c524bd9b47a900836b6f0cc3284f6325e90d7003
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-2657311099918f5b91a3c8428c524bd9b47a900836b6f0cc3284f6325e90d7003
PageCount 7
ParticipantIDs ieee_primary_10022015
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.922527
Snippet Human Activity Recognition (HAR) is a problem of interpreting sensor data to human movement using an efficient machine learning (ML) approach. The HAR systems...
SourceID ieee
SourceType Publisher
StartPage 908
SubjectTerms adversarial machine learning
Crowdsensing
Data collection
data poisoning attack
Deep learning
human activity recognition
Machine learning algorithms
Sensors
Training
Uncertainty
wearables
Title Label Flipping Data Poisoning Attack Against Wearable Human Activity Recognition System
URI https://ieeexplore.ieee.org/document/10022015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1uJ08qTvxNDl7btUmaNscxHVN0DOfYbuPLj46x0Q7pLv71JumqKAje2lJoSVLe-9L33ofQnS3WZAqGB6lhEDAeZ4HUFAIgwqIDl5ZUOHPyy4gPp-xpnsz3ZnXvhTHGePGZCd2h_5evS7VzW2VdFxdqAStpoZZdZ7VZa6_ZiiPRnUz6jy4gzpV9hITN3T_6pnjYGByhUfPAWi2yDneVDNXHryzGf7_RMep8O_Tw-At7TtCBKU7R7Bmk2eDBxocuLPE9VIDHpdMLudNeVYFa494SVpYT4pld4843hf0-Pu6puo8Efm0kRWWB6zzzDpoOHt76w2DfOCFYkYhVAeFJSt2QWPKX5YkUMVCV2UJDJYRJLSRLQTjyxSXPI6WoxaicU5IYEenUfudnqF2UhTlH2NIPZWmAjiWnLNJE5AAUMqV1GqskjS5Qx43KYltnYyyaAbn84_oVOnST4wUh7Bq1q_edubGwXslbP52fR16h3w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA06D3pSceK3OXht16ZJ2h7HdGy6jeE2ttvIV8fYaEXSi3-9SboqCoK3thRafkl575e-9wLAg2nWeMwU9WKFmYdpmHhcRsxjKDXoQLkhFdacPBzR3gw_L8hiZ1Z3XhillBOfKd8eun_5shClXSpr2bhQA1hkHxwY4MeksmvtVFthkLYmk07fRsTZxg8hv77_x84pDji6x2BUP7LSi2z8UnNffPxKY_z3O52A5rdHD46_0OcU7Kn8DMwHjKst7G5d7MIKPjLN4LiwiiF72taaiQ1sr9jasEI4N7PcOqegW8mHbVHtJAFfa1FRkcMq0bwJZt2naafn7bZO8NYowNpDlMSRLYmhf0lGeBqySCSm1RAEYS5TjmOWWvpFOc0CISKDUhmNEFFpIGPzpZ-DRl7k6gJAQ0CEIQIy5DTCgURpxljEEiFlHAoSB5egaauyfKvSMZZ1Qa7-uH4PDnvT4WA56I9ersGRHSgnD8E3oKHfS3VrQF7zOze0n_OYpSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Label+Flipping+Data+Poisoning+Attack+Against+Wearable+Human+Activity+Recognition+System&rft.au=Shahid%2C+Abdur+R.&rft.au=Imteaj%2C+Ahmed&rft.au=Wu%2C+Peter+Y.&rft.au=Igoche%2C+Diane+A.&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=908&rft.epage=914&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022015&rft.externalDocID=10022015