Enabling Efficient Assertion Inference

Assertion inference techniques aim at automatically inferring sets of program assertions that capture the exhibited software behavior, often by generating and filtering assertions through dynamic test executions and mutation testing. Although powerful, such techniques are computationally expensive d...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Symposium on Software Reliability Engineering pp. 623 - 634
Main Authors Garg, Aayush, Degiovanni, Renzo, Molina, Facundo, Cordy, Maxime, Aguirre, Nazareno, Papadakis, Mike, Le Traon, Yves
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.10.2023
Subjects
Online AccessGet full text
ISSN2332-6549
DOI10.1109/ISSRE59848.2023.00039

Cover

Loading…
Abstract Assertion inference techniques aim at automatically inferring sets of program assertions that capture the exhibited software behavior, often by generating and filtering assertions through dynamic test executions and mutation testing. Although powerful, such techniques are computationally expensive due to the large number of mutants that require execution. In this study, we introduce the notion of Assertion Inferring Mutants, and demonstrate that these mutants are sufficient for assertion inference and correspond to a small subset (12.95%) of the entire mutant set. Moreover, these mutants are significantly different (71.59%) from Subsuming Mutants that are frequently cited by mutation testing literature. We also show that Assertion Inferring Mutants can be statically approximated via a learning-based method. Given the widespread adoption of encoder-decoder architecture for prediction tasks, we demonstrate that it predicts Assertion Inferring Mutants with 0.79 Precision and 0.49 Recall. Its evaluation on 46 projects showcases that it enables a comparable inference capability (missing only 12.49% assertions) with a complete mutation analysis, while significantly reducing the execution cost (achieving 46.29 times faster inference). Moreover, it enables assertion inference techniques to scale on subjects where complete mutation testing is prohibitively expensive and other mutant selection strategies do not lead to an acceptable assertion inference.
AbstractList Assertion inference techniques aim at automatically inferring sets of program assertions that capture the exhibited software behavior, often by generating and filtering assertions through dynamic test executions and mutation testing. Although powerful, such techniques are computationally expensive due to the large number of mutants that require execution. In this study, we introduce the notion of Assertion Inferring Mutants, and demonstrate that these mutants are sufficient for assertion inference and correspond to a small subset (12.95%) of the entire mutant set. Moreover, these mutants are significantly different (71.59%) from Subsuming Mutants that are frequently cited by mutation testing literature. We also show that Assertion Inferring Mutants can be statically approximated via a learning-based method. Given the widespread adoption of encoder-decoder architecture for prediction tasks, we demonstrate that it predicts Assertion Inferring Mutants with 0.79 Precision and 0.49 Recall. Its evaluation on 46 projects showcases that it enables a comparable inference capability (missing only 12.49% assertions) with a complete mutation analysis, while significantly reducing the execution cost (achieving 46.29 times faster inference). Moreover, it enables assertion inference techniques to scale on subjects where complete mutation testing is prohibitively expensive and other mutant selection strategies do not lead to an acceptable assertion inference.
Author Molina, Facundo
Papadakis, Mike
Le Traon, Yves
Garg, Aayush
Degiovanni, Renzo
Cordy, Maxime
Aguirre, Nazareno
Author_xml – sequence: 1
  givenname: Aayush
  surname: Garg
  fullname: Garg, Aayush
  email: aayush.garg@uni.lu
  organization: University of Luxembourg,Luxembourg
– sequence: 2
  givenname: Renzo
  surname: Degiovanni
  fullname: Degiovanni, Renzo
  email: renzo.degiovanni@uni.lu
  organization: University of Luxembourg,Luxembourg
– sequence: 3
  givenname: Facundo
  surname: Molina
  fullname: Molina, Facundo
  email: facundo.molina@imdea.org
  organization: IMDEA Software Institute,Spain
– sequence: 4
  givenname: Maxime
  surname: Cordy
  fullname: Cordy, Maxime
  email: maxime.cordy@uni.lu
  organization: University of Luxembourg,Luxembourg
– sequence: 5
  givenname: Nazareno
  surname: Aguirre
  fullname: Aguirre, Nazareno
  email: naguirre@dc.exa.unrc.edu.ar
  organization: University of Río Cuarto and CONICET,Argentina
– sequence: 6
  givenname: Mike
  surname: Papadakis
  fullname: Papadakis, Mike
  email: michail.papadakis@uni.lu
  organization: University of Luxembourg,Luxembourg
– sequence: 7
  givenname: Yves
  surname: Le Traon
  fullname: Le Traon, Yves
  email: yves.letraon@uni.lu
  organization: University of Luxembourg,Luxembourg
BookMark eNotzEFLwzAUAOAoCm5z_0ChJ2-t7-UlaXIco2phIDg9jzR5kcjMpO3Ff6-gp-_2LcVFORUW4hahQQR33-_3L512VtlGgqQGAMidibVrnSUNhNopOhcLSSRro5W7Estp-gCQoFAuxF1X_HDM5b3qUsohc5mrzTTxOOdTqfqSeOQS-FpcJn-ceP3vSrw9dK_bp3r3_NhvN7s6_35zLXVi2SYdjXImegVqaDHZdtABCYJLsbUmxBATUkhhMIPXyNFZZ3SI6Gklbv7ezMyHrzF_-vH7gECAkpB-AIMmQ3k
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISSRE59848.2023.00039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350315943
EISSN 2332-6549
EndPage 634
ExternalDocumentID 10301231
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i204t-25fe27f5d6496da404b71f87b5c130c9fd786cdcdf13cfcb6ba51ed98965cd1a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i204t-25fe27f5d6496da404b71f87b5c130c9fd786cdcdf13cfcb6ba51ed98965cd1a3
PageCount 12
ParticipantIDs ieee_primary_10301231
PublicationCentury 2000
PublicationDate 2023-Oct.-9
PublicationDateYYYYMMDD 2023-10-09
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-9
  day: 09
PublicationDecade 2020
PublicationTitle Proceedings - International Symposium on Software Reliability Engineering
PublicationTitleAbbrev ISSRE
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020412
Score 2.255765
Snippet Assertion inference techniques aim at automatically inferring sets of program assertions that capture the exhibited software behavior, often by generating and...
SourceID ieee
SourceType Publisher
StartPage 623
SubjectTerms assertion inference
Behavioral sciences
Computer architecture
Costs
encoder decoder
Filtering
Learning systems
mutant prediction
mutation testing
Software
Software reliability
Title Enabling Efficient Assertion Inference
URI https://ieeexplore.ieee.org/document/10301231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfFNDuItbTfJvo4iKa1gEWuht7KzDxChFUku_vrObpMqguAthLDJZJJ8md35vo-QW_CGg8546i3WqgW1OgWKz7LNC6kADP71hkLxacrH8-JxwRYNWT1yYZxzsfnM9cNmXMu3a1OHqbJBsMTCLy0WO_tYuW3JWrvqKghHNRQdOlSDyWz2UjIlY_9WFmRMh8EQ_IeFSkSQUZdM23NvG0fe-3UFffP1S5bx3xd3SHrfZL3keQdDR2TPrY5Jt3VrSJqX94TclYEmhYckZZSNwNGS-7gYj6lJJu1YPTIfla8P47RxSUjfMOYqzZh3mfDM8kJxq4thAYJ6KYAZxCejvBWSG2usp7nxBjA1jDqrpOLMWKrzU9JZrVfujCRBFNQIz8E6BC3JNc80gHdCcS1A5uekF-JefmyFMJZtyBd_7L8kB-Hex943dUU61WftrhHDK7iJudsAJSqbyQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHvRUHxXf5iDe0jaPfR1FUlpti9gWeis7-wARWpH04q93d5tUEQRvIYTdDJPsl8nO930At2gVRZnS2GpXq-aJljEm7lnWWc4FonJfvb5QHI1pf5Y_zsm8IqsHLowxJjSfmbY_DHv5eqXW_ldZx1tiuZXWFTu7xLNxN3StbX3lpaMqkk7SFZ3BZPJSEMFDB1fqhUy73hL8h4lKwJBeE8b17JvWkbf2usS2-vwlzPjv2zuA1jddL3reAtEh7JjlETRrv4aoen2P4a7wRCl3SVQE4Qg3WnQftuNdcqJBPVYLZr1i-tCPK5-E-NXFXMYpsSZllmiaC6pl3s2RJZYzJMohlBJWM06VVtommbIKXXJIYrTgghKlE5mdQGO5WppTiLwsqGKWojYOtjiVNJWI1jBBJUOenUHLx71430hhLOqQz_84fwN7_elouBgOxk8XsO_zEDrhxCU0yo-1uXKIXuJ1yOMXeAefEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+Software+Reliability+Engineering&rft.atitle=Enabling+Efficient+Assertion+Inference&rft.au=Garg%2C+Aayush&rft.au=Degiovanni%2C+Renzo&rft.au=Molina%2C+Facundo&rft.au=Cordy%2C+Maxime&rft.date=2023-10-09&rft.pub=IEEE&rft.eissn=2332-6549&rft.spage=623&rft.epage=634&rft_id=info:doi/10.1109%2FISSRE59848.2023.00039&rft.externalDocID=10301231