Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection
This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-di...
Saved in:
Published in | 2022 IEEE International Conference on Image Processing (ICIP) pp. 3041 - 3045 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-dimensional subspace truly spanned by said features. We show that the feature reconstruction error (FRE), which is the ℓ 2 -norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection. To generalize to intermediate features produced at any given layer, we extend the methodology by applying nonlinear kernel-based methods. Experiments using standard image datasets and DNN architectures demonstrate that our method meets or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU. |
---|---|
AbstractList | This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-dimensional subspace truly spanned by said features. We show that the feature reconstruction error (FRE), which is the ℓ 2 -norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection. To generalize to intermediate features produced at any given layer, we extend the methodology by applying nonlinear kernel-based methods. Experiments using standard image datasets and DNN architectures demonstrate that our method meets or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU. |
Author | Ahuja, Nilesh A. Ndiour, Ibrahima J. Tickoo, Omesh |
Author_xml | – sequence: 1 givenname: Ibrahima J. surname: Ndiour fullname: Ndiour, Ibrahima J. organization: Intel Labs – sequence: 2 givenname: Nilesh A. surname: Ahuja fullname: Ahuja, Nilesh A. organization: Intel Labs – sequence: 3 givenname: Omesh surname: Tickoo fullname: Tickoo, Omesh organization: Intel Labs |
BookMark | eNotT8tKw0AUHUXBpvoFgswPJM77sSyJ1UAlgrouk8yNjKRJySSL_r0pdnNei8M5Cbrphx4QeqIko5TY5zIvP4SSWmWMMJZZY7Wy4golVCkprGJEX6MV44amZvF3KInxlxBGKKcrVHzOdTy6BvD74KEL_Q9uhxFvXZxwNU9p1aZFiNMY6nkKQ49d7_GmHw6uO-ECJmjO6T26bV0X4eHCa_S9ffnK39Jd9Vrmm10aGOFT2raaSeF5A9AaI6XzzjjuhWyUrv0yvjGEC-uNtVITUtcNWwAsNaDFIvkaPf73BgDYH8dwcONpf3nM_wBmdEzw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP46576.2022.9897694 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665496207 9781665496209 |
EISSN | 2381-8549 |
EndPage | 3045 |
ExternalDocumentID | 9897694 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-ff7254d3ceef8855ada8a3d45c67bd022c80349d8995700bbc20bbe918e7420b3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-ff7254d3ceef8855ada8a3d45c67bd022c80349d8995700bbc20bbe918e7420b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9897694 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-16 |
PublicationDateYYYYMMDD | 2022-10-16 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.2549486 |
Snippet | This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3041 |
SubjectTerms | Anomaly detection Deep learning Dimensionality reduction Feature extraction Memory management Neural networks out-of-distribution detection Semantics subspace modeling Uncertainty uncertainty estimation |
Title | Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection |
URI | https://ieeexplore.ieee.org/document/9897694 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEaZM4iT2ilqpFKu1ApW6VvyIhIEU0GeDXc05NEYiBJbIiRbbOcu695N47gCshtFacMzxILKfMWEkFk4xymZgkUZlW2omTp_fpeMHulsmyAdc7LYy1ti4-s4Eb1v_yzVpX7lNZT3BMnoI1oZkJsdVq7ciV843xCuCwL3qTwWTOUgTTSAGjKPBP_mihUmeQURumX3NvC0eegqpUgf74Zcv438XtQ_dbq0fmuyx0AA1bHELbg0vij-6mA0P3ikCCbIlrf-ZE6ATxKhnJTUlmVUlnOR06E13f_4rIwpCbYv0in9_J0JZ1xVbRhcXo9mEwpr6FAn2M-nFJ8zxDBmhiXETOeZJII7mMDUt0mimDkdHcGdQYZF3O6F4pHeHFipBb5Mx9FR9Bq1gX9hhIHItccBXpNDLMRIgsJM_yEAGYQhiVyRPouKCsXrcuGSsfj9O_b5_BntsYlwXC9Bxa5VtlLzC9l-qy3tdP3KWlMw |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERhzZxEntELVUL_RpaqVvlr0gISBFNBvj1nNNQBGJgiaxIka2znHsvufcO4EoIrRXnDA8SSygzVlLBJKNchiYMVayVduLk4Sjqzdj9PJxX4HqjhbHWFsVn1nPD4l--WercfSq7ERyTp2BbsI24mkdrtdaGXjnnmFID3GqKm367P2ERwmkkgb7vlc_-aKJS5JBuDYZfs69LR568PFOe_vhlzPjf5e1B41utRyabPLQPFZseQK2El6Q8vKs6dNxLAimyJa4BmpOhE0SspCtXGRnnGR0ntONsdMsOWESmhtymyxf5_E46NitqttIGzLp303aPlk0U6KPfDDKaJDFyQBPgIhLOw1AayWVgWKijWBmMjObOosYg73JW90ppHy9WtLhF1txUwSFU02Vqj4AEgUgEV76OfMOMj9hC8jhpIQRTCKRieQx1F5TF69onY1HG4-Tv25ew05sOB4tBf_RwCrtuk1xOaEVnUM3ecnuOyT5TF8UefwKxTah- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Subspace+Modeling+for+Fast+Out-Of-Distribution+and+Anomaly+Detection&rft.au=Ndiour%2C+Ibrahima+J.&rft.au=Ahuja%2C+Nilesh+A.&rft.au=Tickoo%2C+Omesh&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3041&rft.epage=3045&rft_id=info:doi/10.1109%2FICIP46576.2022.9897694&rft.externalDocID=9897694 |