Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection

This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-di...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Conference on Image Processing (ICIP) pp. 3041 - 3045
Main Authors Ndiour, Ibrahima J., Ahuja, Nilesh A., Tickoo, Omesh
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-dimensional subspace truly spanned by said features. We show that the feature reconstruction error (FRE), which is the ℓ 2 -norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection. To generalize to intermediate features produced at any given layer, we extend the methodology by applying nonlinear kernel-based methods. Experiments using standard image datasets and DNN architectures demonstrate that our method meets or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU.
AbstractList This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the application of linear statistical dimensionality reduction techniques on the semantic features produced by a DNN, in order to capture the low-dimensional subspace truly spanned by said features. We show that the feature reconstruction error (FRE), which is the ℓ 2 -norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is highly effective for OOD and anomaly detection. To generalize to intermediate features produced at any given layer, we extend the methodology by applying nonlinear kernel-based methods. Experiments using standard image datasets and DNN architectures demonstrate that our method meets or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU.
Author Ahuja, Nilesh A.
Ndiour, Ibrahima J.
Tickoo, Omesh
Author_xml – sequence: 1
  givenname: Ibrahima J.
  surname: Ndiour
  fullname: Ndiour, Ibrahima J.
  organization: Intel Labs
– sequence: 2
  givenname: Nilesh A.
  surname: Ahuja
  fullname: Ahuja, Nilesh A.
  organization: Intel Labs
– sequence: 3
  givenname: Omesh
  surname: Tickoo
  fullname: Tickoo, Omesh
  organization: Intel Labs
BookMark eNotT8tKw0AUHUXBpvoFgswPJM77sSyJ1UAlgrouk8yNjKRJySSL_r0pdnNei8M5Cbrphx4QeqIko5TY5zIvP4SSWmWMMJZZY7Wy4golVCkprGJEX6MV44amZvF3KInxlxBGKKcrVHzOdTy6BvD74KEL_Q9uhxFvXZxwNU9p1aZFiNMY6nkKQ49d7_GmHw6uO-ECJmjO6T26bV0X4eHCa_S9ffnK39Jd9Vrmm10aGOFT2raaSeF5A9AaI6XzzjjuhWyUrv0yvjGEC-uNtVITUtcNWwAsNaDFIvkaPf73BgDYH8dwcONpf3nM_wBmdEzw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP46576.2022.9897694
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665496207
9781665496209
EISSN 2381-8549
EndPage 3045
ExternalDocumentID 9897694
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-ff7254d3ceef8855ada8a3d45c67bd022c80349d8995700bbc20bbe918e7420b3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:43 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ff7254d3ceef8855ada8a3d45c67bd022c80349d8995700bbc20bbe918e7420b3
PageCount 5
ParticipantIDs ieee_primary_9897694
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.2549486
Snippet This paper presents a fast, principled approach for detecting anomalous and out-of-distribution (OOD) samples in deep neural networks (DNN). We propose the...
SourceID ieee
SourceType Publisher
StartPage 3041
SubjectTerms Anomaly detection
Deep learning
Dimensionality reduction
Feature extraction
Memory management
Neural networks
out-of-distribution detection
Semantics
subspace modeling
Uncertainty
uncertainty estimation
Title Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection
URI https://ieeexplore.ieee.org/document/9897694
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEaZM4iT2ilqpFKu1ApW6VvyIhIEU0GeDXc05NEYiBJbIiRbbOcu695N47gCshtFacMzxILKfMWEkFk4xymZgkUZlW2omTp_fpeMHulsmyAdc7LYy1ti4-s4Eb1v_yzVpX7lNZT3BMnoI1oZkJsdVq7ciV843xCuCwL3qTwWTOUgTTSAGjKPBP_mihUmeQURumX3NvC0eegqpUgf74Zcv438XtQ_dbq0fmuyx0AA1bHELbg0vij-6mA0P3ikCCbIlrf-ZE6ATxKhnJTUlmVUlnOR06E13f_4rIwpCbYv0in9_J0JZ1xVbRhcXo9mEwpr6FAn2M-nFJ8zxDBmhiXETOeZJII7mMDUt0mimDkdHcGdQYZF3O6F4pHeHFipBb5Mx9FR9Bq1gX9hhIHItccBXpNDLMRIgsJM_yEAGYQhiVyRPouKCsXrcuGSsfj9O_b5_BntsYlwXC9Bxa5VtlLzC9l-qy3tdP3KWlMw
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERhzZxEntELVUL_RpaqVvlr0gISBFNBvj1nNNQBGJgiaxIka2znHsvufcO4EoIrRXnDA8SSygzVlLBJKNchiYMVayVduLk4Sjqzdj9PJxX4HqjhbHWFsVn1nPD4l--WercfSq7ERyTp2BbsI24mkdrtdaGXjnnmFID3GqKm367P2ERwmkkgb7vlc_-aKJS5JBuDYZfs69LR568PFOe_vhlzPjf5e1B41utRyabPLQPFZseQK2El6Q8vKs6dNxLAimyJa4BmpOhE0SspCtXGRnnGR0ntONsdMsOWESmhtymyxf5_E46NitqttIGzLp303aPlk0U6KPfDDKaJDFyQBPgIhLOw1AayWVgWKijWBmMjObOosYg73JW90ppHy9WtLhF1txUwSFU02Vqj4AEgUgEV76OfMOMj9hC8jhpIQRTCKRieQx1F5TF69onY1HG4-Tv25ew05sOB4tBf_RwCrtuk1xOaEVnUM3ecnuOyT5TF8UefwKxTah-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Subspace+Modeling+for+Fast+Out-Of-Distribution+and+Anomaly+Detection&rft.au=Ndiour%2C+Ibrahima+J.&rft.au=Ahuja%2C+Nilesh+A.&rft.au=Tickoo%2C+Omesh&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3041&rft.epage=3045&rft_id=info:doi/10.1109%2FICIP46576.2022.9897694&rft.externalDocID=9897694