Model-Based Approach for Measuring the Fairness in ASR

The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across s...

Full description

Saved in:
Bibliographic Details
Published inICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 6532 - 6536
Main Authors Liu, Zhe, Veliche, Irina-Elena, Peng, Fuchun
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across speakers, and how to trace the source of any word error rate (WER) gap among different subgroups are especially important - if not appropriately accounted for, incorrect conclusions will be drawn. In this paper, we introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest. Particularly, the presented method can effectively address the three problems raised above and is very flexible to use in practical disparity analyses. We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data.
AbstractList The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across speakers, and how to trace the source of any word error rate (WER) gap among different subgroups are especially important - if not appropriately accounted for, incorrect conclusions will be drawn. In this paper, we introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest. Particularly, the presented method can effectively address the three problems raised above and is very flexible to use in practical disparity analyses. We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data.
Author Veliche, Irina-Elena
Peng, Fuchun
Liu, Zhe
Author_xml – sequence: 1
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  organization: Meta AI,Menlo Park,CA,USA
– sequence: 2
  givenname: Irina-Elena
  surname: Veliche
  fullname: Veliche, Irina-Elena
  organization: Meta AI,Menlo Park,CA,USA
– sequence: 3
  givenname: Fuchun
  surname: Peng
  fullname: Peng, Fuchun
  organization: Meta AI,Menlo Park,CA,USA
BookMark eNotj81Kw0AUhUdRsKk-gZt5gdQ7uZP5WcZiq9CiGAV3ZTK5YyM1CTN14dsbsHA43-7jnIxd9ENPjHEBCyHA3j0tq7p-kWiLYlHAVFZLrUp5xjKhJsIUdc5mBWqbCwsfVyxL6QsAjJZmxtR2aOmQ37tELa_GMQ7O73kYIt-SSz-x6z_5cU985brYU0q863lVv16zy-AOiW5OnLP31cPb8jHfPK-nSZu8KwCPeSBXqhaVl7Y0jQ0uCIvUUvAWG28QUHrnRVClRmpKQ-DBakThjdKhRZyz239vR0S7MXbfLv7uTh_xDw26SDU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747654
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 6536
ExternalDocumentID 9747654
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-fea56d36c4958b9faf193edefc93bc83034cac1f6573eb58e0c097331c867fd33
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:26 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fea56d36c4958b9faf193edefc93bc83034cac1f6573eb58e0c097331c867fd33
PageCount 5
ParticipantIDs ieee_primary_9747654
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2977252
Snippet The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any...
SourceID ieee
SourceType Publisher
StartPage 6532
SubjectTerms Atmospheric measurements
Automatic speech recognition
Conferences
Error analysis
fairness
Measurement uncertainty
Particle measurements
Poisson regression
random effect
Signal processing
Sociology
Title Model-Based Approach for Measuring the Fairness in ASR
URI https://ieeexplore.ieee.org/document/9747654
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAGP1QT-2li5buzKHHjiaZJZOjlYotWKRW8CazgrTEIsmlv74zMdqFHnoJIcyQzMK8l5nvvQ_ghkmlgs0XDt4smKo0xtLPHeyM8NMpcywyQY08fuKjGX2cs3kDbndaGGttFXxmu-G2Oss3K12GrbJe4L6c0SY00yzbaLV2q65IqdhG6kRZ72HQn04nHm2ToLbyl7rujyQqFYYMD2C8ffsmdOS1Wxaqqz9-GTP-9_MOofOl1kOTHQ4dQcPmx7D_zWiwDTykPHvDdx6yDOrXNuLI81U0rvYIfSHkmSAayuU6rH1omaP-9LkDs-H9y2CE64wJeJlEpMDOSsYN4dr_9giVOek8P7PGOp0RpX3vE6qljh1nKbGKCRvpYNdDYi146gwhJ9DKV7k9BWSzWGrDaUQMo0lMFWOe6QmlSWKEjPUZtEMPLN43phiLuvHnfz--gL0wCuHYPSGX0CrWpb3yaF6o62oYPwEFXp3L
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD-rFBxjf9uDRwrY-1h2RSEAZIQIJN9JnQjTDkHHxr7cdAx_x4GVZljZbH-n3rf193w-AOyqk9DZfyHuzICLjEAk3d5DV3E2nxNJAezVyOmDdCXma0mkF3G-1MMaYIvjMNPxtcZavF2rlt8qanvsySnbALvW8Yq3W2q67PCZ8E6sTJM1euzUaDR3eRl5v5S5l7R9pVAoU6RyCdPP-dfDIa2OVy4b6-GXN-N8PPAL1L70eHG6R6BhUTHYCDr5ZDdYA80nP3tCDAy0NW6WROHSMFabFLqErBB0XhB0xX_rVD84z2Bq91MGk8zhud1GZMwHNowDnyBpBmcZMuR8fLhMrrGNoRhurEiyV639MlFChZTTGRlJuAuUNe3CoOIutxvgUVLNFZs4ANEkolGYkwJqSKCSSUsf1uFQ40lyE6hzUfA_M3te2GLOy8Rd_P74Fe91x2p_1e4PnS7DvR8Qfwkf4ClTz5cpcO2zP5U0xpJ979qEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2022+-+2022+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Model-Based+Approach+for+Measuring+the+Fairness+in+ASR&rft.au=Liu%2C+Zhe&rft.au=Veliche%2C+Irina-Elena&rft.au=Peng%2C+Fuchun&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=6532&rft.epage=6536&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747654&rft.externalDocID=9747654