Model-Based Approach for Measuring the Fairness in ASR
The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across s...
Saved in:
Published in | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 6532 - 6536 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across speakers, and how to trace the source of any word error rate (WER) gap among different subgroups are especially important - if not appropriately accounted for, incorrect conclusions will be drawn. In this paper, we introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest. Particularly, the presented method can effectively address the three problems raised above and is very flexible to use in practical disparity analyses. We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data. |
---|---|
AbstractList | The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any fairness measurement studies for ASR, the open questions of how to control the confounding factors, how to handle unobserved heterogeneity across speakers, and how to trace the source of any word error rate (WER) gap among different subgroups are especially important - if not appropriately accounted for, incorrect conclusions will be drawn. In this paper, we introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest. Particularly, the presented method can effectively address the three problems raised above and is very flexible to use in practical disparity analyses. We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data. |
Author | Veliche, Irina-Elena Peng, Fuchun Liu, Zhe |
Author_xml | – sequence: 1 givenname: Zhe surname: Liu fullname: Liu, Zhe organization: Meta AI,Menlo Park,CA,USA – sequence: 2 givenname: Irina-Elena surname: Veliche fullname: Veliche, Irina-Elena organization: Meta AI,Menlo Park,CA,USA – sequence: 3 givenname: Fuchun surname: Peng fullname: Peng, Fuchun organization: Meta AI,Menlo Park,CA,USA |
BookMark | eNotj81Kw0AUhUdRsKk-gZt5gdQ7uZP5WcZiq9CiGAV3ZTK5YyM1CTN14dsbsHA43-7jnIxd9ENPjHEBCyHA3j0tq7p-kWiLYlHAVFZLrUp5xjKhJsIUdc5mBWqbCwsfVyxL6QsAjJZmxtR2aOmQ37tELa_GMQ7O73kYIt-SSz-x6z_5cU985brYU0q863lVv16zy-AOiW5OnLP31cPb8jHfPK-nSZu8KwCPeSBXqhaVl7Y0jQ0uCIvUUvAWG28QUHrnRVClRmpKQ-DBakThjdKhRZyz239vR0S7MXbfLv7uTh_xDw26SDU |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP43922.2022.9747654 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665405406 9781665405409 |
EISSN | 2379-190X |
EndPage | 6536 |
ExternalDocumentID | 9747654 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-fea56d36c4958b9faf193edefc93bc83034cac1f6573eb58e0c097331c867fd33 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:26 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-fea56d36c4958b9faf193edefc93bc83034cac1f6573eb58e0c097331c867fd33 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9747654 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-23 |
PublicationDateYYYYMMDD | 2022-05-23 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2977252 |
Snippet | The issue of fairness arises when the automatic speech recognition (ASR) systems do not perform equally well for all subgroups of the population. In any... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6532 |
SubjectTerms | Atmospheric measurements Automatic speech recognition Conferences Error analysis fairness Measurement uncertainty Particle measurements Poisson regression random effect Signal processing Sociology |
Title | Model-Based Approach for Measuring the Fairness in ASR |
URI | https://ieeexplore.ieee.org/document/9747654 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja8JAGP1QT-2li5buzKHHjiaZJZOjlYotWKRW8CazgrTEIsmlv74zMdqFHnoJIcyQzMK8l5nvvQ_ghkmlgs0XDt4smKo0xtLPHeyM8NMpcywyQY08fuKjGX2cs3kDbndaGGttFXxmu-G2Oss3K12GrbJe4L6c0SY00yzbaLV2q65IqdhG6kRZ72HQn04nHm2ToLbyl7rujyQqFYYMD2C8ffsmdOS1Wxaqqz9-GTP-9_MOofOl1kOTHQ4dQcPmx7D_zWiwDTykPHvDdx6yDOrXNuLI81U0rvYIfSHkmSAayuU6rH1omaP-9LkDs-H9y2CE64wJeJlEpMDOSsYN4dr_9giVOek8P7PGOp0RpX3vE6qljh1nKbGKCRvpYNdDYi146gwhJ9DKV7k9BWSzWGrDaUQMo0lMFWOe6QmlSWKEjPUZtEMPLN43phiLuvHnfz--gL0wCuHYPSGX0CrWpb3yaF6o62oYPwEFXp3L |
link.rule.ids | 310,311,783,787,792,793,799,23944,23945,25154,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD-rFBxjf9uDRwrY-1h2RSEAZIQIJN9JnQjTDkHHxr7cdAx_x4GVZljZbH-n3rf193w-AOyqk9DZfyHuzICLjEAk3d5DV3E2nxNJAezVyOmDdCXma0mkF3G-1MMaYIvjMNPxtcZavF2rlt8qanvsySnbALvW8Yq3W2q67PCZ8E6sTJM1euzUaDR3eRl5v5S5l7R9pVAoU6RyCdPP-dfDIa2OVy4b6-GXN-N8PPAL1L70eHG6R6BhUTHYCDr5ZDdYA80nP3tCDAy0NW6WROHSMFabFLqErBB0XhB0xX_rVD84z2Bq91MGk8zhud1GZMwHNowDnyBpBmcZMuR8fLhMrrGNoRhurEiyV639MlFChZTTGRlJuAuUNe3CoOIutxvgUVLNFZs4ANEkolGYkwJqSKCSSUsf1uFQ40lyE6hzUfA_M3te2GLOy8Rd_P74Fe91x2p_1e4PnS7DvR8Qfwkf4ClTz5cpcO2zP5U0xpJ979qEY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2022+-+2022+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Model-Based+Approach+for+Measuring+the+Fairness+in+ASR&rft.au=Liu%2C+Zhe&rft.au=Veliche%2C+Irina-Elena&rft.au=Peng%2C+Fuchun&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=6532&rft.epage=6536&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747654&rft.externalDocID=9747654 |