A Fully Parallel Distributed Algorithm for Non-Smooth Convex Optimization with Coupled Constraints: Application to Linear Algebraic Equations

In this paper, collaborative optimization of sum of convex functions is considered where agents make decision using local information over networks subject to globally coupled affine equality and inequality constraints. In this problem, the globally coupled equality and inequality constraints'...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the American Control Conference pp. 920 - 925
Main Authors Alaviani, S. Sh, Kelkar, A. G., Vaidya, U.
Format Conference Proceeding
LanguageEnglish
Published American Automatic Control Council 08.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, collaborative optimization of sum of convex functions is considered where agents make decision using local information over networks subject to globally coupled affine equality and inequality constraints. In this problem, the globally coupled equality and inequality constraints' information is only partially accessible to each agent. The first discrete-time fully parallel distributed algorithm without diminishing step sizes, (sub)gradient, and/or solving a sub-problem at each time is derived based on monotone operator splitting approach. In the algorithm, the updates of variables happen independent of each other that results in reducing computational time per iteration significantly. The algorithm can converge to an optimal solution for any convex cost functions and any convex constraint sets of agents with arbitrary initialization over any undirected static (non-switching) networks in synchronous protocol. As an application of the problem, solving linear algebraic equations (LAEs) of the form Ax = b among m agents is considered where each agent only knows the partitioned matrix [A i , b i ] such that A = \left( {\Sigma _{i = 1}^m{A_i}} \right) and b = \left( {\Sigma _{i = 1}^m{b_i}} \right). The algorithm for LAEs is able to converge to an optimal solution for any matrices A and b.
AbstractList In this paper, collaborative optimization of sum of convex functions is considered where agents make decision using local information over networks subject to globally coupled affine equality and inequality constraints. In this problem, the globally coupled equality and inequality constraints' information is only partially accessible to each agent. The first discrete-time fully parallel distributed algorithm without diminishing step sizes, (sub)gradient, and/or solving a sub-problem at each time is derived based on monotone operator splitting approach. In the algorithm, the updates of variables happen independent of each other that results in reducing computational time per iteration significantly. The algorithm can converge to an optimal solution for any convex cost functions and any convex constraint sets of agents with arbitrary initialization over any undirected static (non-switching) networks in synchronous protocol. As an application of the problem, solving linear algebraic equations (LAEs) of the form Ax = b among m agents is considered where each agent only knows the partitioned matrix [A i , b i ] such that A = \left( {\Sigma _{i = 1}^m{A_i}} \right) and b = \left( {\Sigma _{i = 1}^m{b_i}} \right). The algorithm for LAEs is able to converge to an optimal solution for any matrices A and b.
Author Alaviani, S. Sh
Vaidya, U.
Kelkar, A. G.
Author_xml – sequence: 1
  givenname: S. Sh
  surname: Alaviani
  fullname: Alaviani, S. Sh
  email: salavia@uga.edu
  organization: University of Georgia,The School of Electrical and Computer Engineering,Athens,GA,USA,30602
– sequence: 2
  givenname: A. G.
  surname: Kelkar
  fullname: Kelkar, A. G.
  email: atul@clemson.edu
  organization: Clemson University,Department of Mechanical Engineering,Clemson,SC,USA,29634
– sequence: 3
  givenname: U.
  surname: Vaidya
  fullname: Vaidya, U.
  email: uvaidya@clemson.edu
  organization: Clemson University,Department of Mechanical Engineering,Clemson,SC,USA,29634
BookMark eNotkEFOwzAQAA0CCVr6AiTkD6TE68SxuUWhBaSKIgHnyk5sauTGIXGA8gf-TGh72pVmdg47Qie1rzVCVySeAhVEXOdFkVKa8CnEAFPBWUYEHKGJyDhhLE1SIhg9RudAMx6lnJEzNOq69zgmQrD4HP3meN47t8VPspXOaYdvbRdaq_qgK5y7N9_asN5g41v86OvoeeN9WOPC15_6Gy-bYDf2Rwbra_xld6Bv3HA5CENG2jp0NzhvGmfLvRU8Xthay_Y_rtWglHj20e9gd4FOjXSdnhzmGL3OZy_FfbRY3j0U-SKyENMQmaqkYAyDVKUAimclJJXipdKQJsPOtaqMNImKoQJltKhYIogRSg0EqKJjdLnvWq31qmntRrbb1eF79A-CFWp3
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.23919/ACC53348.2022.9867192
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665451963
1665451963
EISSN 2378-5861
EndPage 925
ExternalDocumentID 9867192
Genre orig-research
GroupedDBID -~X
23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-fdc32ff625b522b87c24db8cbe254c248ebdfaf4b02d2bfe9d6491f9bb8eb23b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fdc32ff625b522b87c24db8cbe254c248ebdfaf4b02d2bfe9d6491f9bb8eb23b3
PageCount 6
ParticipantIDs ieee_primary_9867192
PublicationCentury 2000
PublicationDate 2022-June-8
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-8
  day: 08
PublicationDecade 2020
PublicationTitle Proceedings of the American Control Conference
PublicationTitleAbbrev ACC
PublicationYear 2022
Publisher American Automatic Control Council
Publisher_xml – name: American Automatic Control Council
SSID ssj0019960
Score 1.8211457
Snippet In this paper, collaborative optimization of sum of convex functions is considered where agents make decision using local information over networks subject to...
SourceID ieee
SourceType Publisher
StartPage 920
SubjectTerms Collaboration
Convex functions
Cost function
Decision feedback equalizers
Distributed algorithms
Partitioning algorithms
Protocols
Title A Fully Parallel Distributed Algorithm for Non-Smooth Convex Optimization with Coupled Constraints: Application to Linear Algebraic Equations
URI https://ieeexplore.ieee.org/document/9867192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOBIQuM4i7lVoVWFRKkElXqr4g0q2qS0iQT8A__MOAktIA7crEROIjv2zPPMe4PQuWcUWmIqLZ-H2qIxLEXWEp4FxhyshSah5kWCbN_vDenNyBvV0MWKC6OUKpLPlG2aRSxfpiI3R2WXzIixMdhwNwC4lVytVcTAqIyUDGDiModdtqOoYJkCBCTErnr-KKFSWJDuNrr9eneZOPJs5xm3xfsvWcb_ftwOaq65eniwskK7qKaSPbT1TWawgT7a2CDNNzyIF6Z0yhRfG7lcU-lKSdyePqaLSfY0w-C_4n6aWPezFOYPRyYh_RXfwaYyq9ia2Bzbwo18PoWepthnUWIiW17h9joSjrMUA8aFNWQebiLTE4E7L6Wo-LKJht3OQ9SzqjIM1oS03MzSUrhEawBKHJw1HgaCUMlDwRWAS2iHiksda8pbRBKuFZM-ZY5mnMMd4nJ3H9WTNFEHCAeOcHhAY9eNKY0Dh7saHArPD5lSIlbiEDXMwI7npdLGuBrTo78vH6NNM7lF4lZ4gurZIlen4CJk_Kz4Nz4B8aG_2w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6IHtSLP8D42x48usG6DlZvZEJQAUmEhBtpu1aJwBC2RP0f_J993RDUePDWbOm2tGvfe33v-z6ELjzD0MJpaJWFry3KYSmykvQsMOZgLTTxtUgLZNvlRo_e9r1-Dl0usTBKqbT4TNmmmebyw0gm5qisyAwZG4MNdx3svkcytNYyZ2B4RjIMMHGZw4rVIEhxphAEEmIv-v4QUUltSH0btb7enpWOPNtJLGz5_ouY8b-ft4MKK7Qe7izt0C7Kqcke2vpGNJhHH1VsYs033OEzI54ywteGMNdoXakQV0eP0WwYP40xeLC4HU2sh3EEM4gDU5L-iu9hWxkv8JrYHNzCjWQ6gp5G7jMVmYjnV7i6yoXjOMIQ5cIqMg83uemhxLWXjFZ8XkC9eq0bNKyFEIM1JCU3tnQoXaI1hEoC3DXhVyShofClUBBeQttXItRcU1EiIRFasbBMmaOZEHCHuMLdR2uTaKIOEK440hEVyl2XU8orjnA1uBRe2WdKSa7kIcqbgR1MM66NwWJMj_6-fI42Gt1Wc9C8ad8do00z0WkZl3-C1uJZok7BYYjFWfqffAIbQcMl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+American+Control+Conference&rft.atitle=A+Fully+Parallel+Distributed+Algorithm+for+Non-Smooth+Convex+Optimization+with+Coupled+Constraints%3A+Application+to+Linear+Algebraic+Equations&rft.au=Alaviani%2C+S.+Sh&rft.au=Kelkar%2C+A.+G.&rft.au=Vaidya%2C+U.&rft.date=2022-06-08&rft.pub=American+Automatic+Control+Council&rft.eissn=2378-5861&rft.spage=920&rft.epage=925&rft_id=info:doi/10.23919%2FACC53348.2022.9867192&rft.externalDocID=9867192