DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG
Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2021.3053999 |
Cover
Loading…
Abstract | Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to produce the exact report on the level of depression. Previous studies proved the feasibility of the usage of EEG data and deep learning (DL) models for diagnosing mental illness. Therefore, this study proposes a DL-based convolutional neural network (CNN) called DeprNet for classifying the EEG data of depressed and normal subjects. Here, the Patient Health Questionnaire 9 score is used for quantifying the level of depression. The performance of DeprNet in two experiments, namely, the recordwise split and the subjectwise split, is presented in this study. The results attained by DeprNet have an accuracy of 0.9937, and the area under the receiver operating characteristic curve (AUC) of 0.999 is achieved when recordwise split data are considered. On the other hand, an accuracy of 0.914 and the AUC of 0.956 are obtained, while subjectwise split data are employed. These results suggest that CNN trained on recordwise split data gets overtrained on EEG data with a small number of subjects. The performance of DeprNet is remarkable compared with the other eight baseline models. Furthermore, on visualizing the last CNN layer, it is found that the values of right electrodes are prominent for depressed subjects, whereas, for normal subjects, the values of left electrodes are prominent. |
---|---|
AbstractList | Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to produce the exact report on the level of depression. Previous studies proved the feasibility of the usage of EEG data and deep learning (DL) models for diagnosing mental illness. Therefore, this study proposes a DL-based convolutional neural network (CNN) called DeprNet for classifying the EEG data of depressed and normal subjects. Here, the Patient Health Questionnaire 9 score is used for quantifying the level of depression. The performance of DeprNet in two experiments, namely, the recordwise split and the subjectwise split, is presented in this study. The results attained by DeprNet have an accuracy of 0.9937, and the area under the receiver operating characteristic curve (AUC) of 0.999 is achieved when recordwise split data are considered. On the other hand, an accuracy of 0.914 and the AUC of 0.956 are obtained, while subjectwise split data are employed. These results suggest that CNN trained on recordwise split data gets overtrained on EEG data with a small number of subjects. The performance of DeprNet is remarkable compared with the other eight baseline models. Furthermore, on visualizing the last CNN layer, it is found that the values of right electrodes are prominent for depressed subjects, whereas, for normal subjects, the values of left electrodes are prominent. |
Author | Yazidi, Anis Herrera-Viedma, Enrique Seal, Ayan Bajpai, Rishabh Agnihotri, Jagriti Krejcar, Ondrej |
Author_xml | – sequence: 1 givenname: Ayan orcidid: 0000-0002-9939-2926 surname: Seal fullname: Seal, Ayan email: ayanseal30@ieee.org organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India – sequence: 2 givenname: Rishabh orcidid: 0000-0002-0542-8255 surname: Bajpai fullname: Bajpai, Rishabh email: rishabhbajpai24@gmail.com organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India – sequence: 3 givenname: Jagriti orcidid: 0000-0002-7527-7392 surname: Agnihotri fullname: Agnihotri, Jagriti email: jagriti.agni@gmail.com organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India – sequence: 4 givenname: Anis orcidid: 0000-0001-7591-1659 surname: Yazidi fullname: Yazidi, Anis email: anisy@oslomet.no organization: Research Group in Applied Artificial Intelligence, Oslo Metropolitan University, Oslo, Norway – sequence: 5 givenname: Enrique orcidid: 0000-0002-7922-4984 surname: Herrera-Viedma fullname: Herrera-Viedma, Enrique email: viedma@decsai.ugr.es organization: Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain – sequence: 6 givenname: Ondrej orcidid: 0000-0002-5992-2574 surname: Krejcar fullname: Krejcar, Ondrej email: ondrej.krejcar@uhk.cz organization: Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic |
BookMark | eNotjctOwzAQRS1UJNrCHolNJNYpEz_imF3VF5VK2RSxjGJnglLaONgOiL8npazu6OrMuSMyaGyDhNwmMEkSUA-79fOEAk0mDARTSl2QYSKEjFWa0gEZAiRZrLhIr8jI-z0AyJTLIXmbY-u2GB6jaTRHbKOZbb7soQu1baItdq449BG-rfuIlq444t9VWdfTAU2om_fopEDvTx-v_lQsFqtrclkVB483_zkmu-ViN3uKNy-r9Wy6iWsKLMRVSSumK6GFKbk2QmdaSI0VGG5MWkqlBCjGlNaoS1YoCkaWWmgtBDUc2Jjcn7Wts58d-pDvbeeafjGnPJOcSZbJnro7UzUi5q2rj4X7yXuvoEyxX3t2Xn0 |
CODEN | IEIMAO |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2021.3053999 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 9335239 |
Genre | orig-research |
GrantInformation_xml | – fundername: Malaysia Research University Network (MRUN) grantid: Vot 4L876 – fundername: “Smart Solutions in Ubiquitous Computing Environments”, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic grantid: UHK-FIM-GE-2021 – fundername: Fundamental Research Grant Scheme (FRGS) grantid: Vot5F073 – fundername: “Prediction of diseases through computer assisted diagnosis system using images captured by minimally-invasive and non-invasive modalities”, Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur India grantid: SPARCMHRD-231 – fundername: Ministry of Education Malaysia for the completion of the research – fundername: Universiti Teknologi Malaysia (UTM) under Research University grantid: Vot-20H04 funderid: 10.13039/501100005417 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-i203t-fd2f3bf5b5cd4bc5b8b57bef0c4cc6d799509339bbebd3a920c7db5bb552c403 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:17:31 EDT 2025 Wed Aug 27 02:44:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-fd2f3bf5b5cd4bc5b8b57bef0c4cc6d799509339bbebd3a920c7db5bb552c403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5992-2574 0000-0001-7591-1659 0000-0002-0542-8255 0000-0002-7527-7392 0000-0002-9939-2926 0000-0002-7922-4984 |
PQID | 2487437387 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2487437387 ieee_primary_9335239 |
PublicationCentury | 2000 |
PublicationDate | 20210000 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0007647 |
Score | 2.6391528 |
Snippet | Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are... |
SourceID | proquest ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Brain modeling Convolution Convolutional neural network (CNN) Depression Electrodes Electroencephalography Feasibility studies Feature extraction Indexes Machine learning measurement of depression Mental depression Mental health Neural networks pattern classification Support vector machines visualization |
Title | DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG |
URI | https://ieeexplore.ieee.org/document/9335239 https://www.proquest.com/docview/2487437387 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7agqAHH61itcoePJo03WSTxlvpwyq0p4q9hczuBERIS5t68Ne7m0cR9eAtkGRZdmfn-c23AHfKd0ibBbQkNy052oRZsXK1MvQ4Oj7FHuVE2rO5P33xnpdiWYP7fS8MEeXgM7LNY17LVyu5M6mybmgahNywDnUduBW9WnutG_hewY_Z0wdYewVVSdIJu4unmQ4Eec_Wsq3tcVhepPJL--YmZXICs2oyBZLk3d5laMvPHzyN_53tKRyXviUbFMJwBjVKm3D0jXGwCQc54lNuW_A6ovVmTtkDG7AR0ZoNV-lHKYfMUHbokeYFRpxNKgQX0y6u_toUHvRwbFTBaFOWQw_YePx4DovJeDGcWuUtC9Ybd9zMShRPXEwECqk8lAL7KAKkxJGelL4yhHEm6xEiEio3DrkjA4UCUQguPce9gEa6SukSGDlujImvOOkXnKuQksTrk-qbflVXija0zCpF64JHIyoXqA2dah-i8gBtI64DqZx1Kbj6-69rODR7WmRDOtDINju60f5Bhre5YHwB2Z-5Og |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gxqgHH6ARRe3BowtLd7uw3ggPQYETRm4bpp1NjMlCYPHgr7fdBzHqwVuT7TZNO52ZznzzFeBOeTZps4CW5KYkR5swa64crQxdjrZHc5cSIu3xxBu8uE8zMSvA_bYWhogS8BnVTDPJ5auF3JhQWd03BUKOvwO72u6LRlqttdW7Tc9NGTIb-ghrvyBPStp-fToc66sgb9S0dGuL7GdPqfzSv4lR6R_DOJ9OiiV5r21irMnPH0yN_53vCRxl3iVrp-JwCgWKSnD4jXOwBHsJ5lOuy_DapeVqQvEDa7Mu0ZJ1FtFHJonMkHbokSYpSpz1cwwX006u7m1SD3o41s2BtBFLwAes13s8g2m_N-0MrOydBeuN205shYqHDoYChVQuSoEtFE2k0JaulJ4ylHEm7uEjEipn7nNbNhUKRCG4dG3nHIrRIqILYGQ7cww9xUl_4Fz5FIZui1TLVKw6UlSgbFYpWKZMGkG2QBWo5vsQZEdoHXB9lUp4l5qXf_91C_uD6XgUjIaT5ys4MPubxkaqUIxXG7rW3kKMN4mQfAGw_ryD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeprNet%3A+A+Deep+Convolution+Neural+Network+Framework+for+Detecting+Depression+Using+EEG&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Seal%2C+Ayan&rft.au=Bajpai%2C+Rishabh&rft.au=Agnihotri%2C+Jagriti&rft.au=Yazidi%2C+Anis&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3053999&rft.externalDocID=9335239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |