DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG

Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 13
Main Authors Seal, Ayan, Bajpai, Rishabh, Agnihotri, Jagriti, Yazidi, Anis, Herrera-Viedma, Enrique, Krejcar, Ondrej
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3053999

Cover

Loading…
Abstract Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to produce the exact report on the level of depression. Previous studies proved the feasibility of the usage of EEG data and deep learning (DL) models for diagnosing mental illness. Therefore, this study proposes a DL-based convolutional neural network (CNN) called DeprNet for classifying the EEG data of depressed and normal subjects. Here, the Patient Health Questionnaire 9 score is used for quantifying the level of depression. The performance of DeprNet in two experiments, namely, the recordwise split and the subjectwise split, is presented in this study. The results attained by DeprNet have an accuracy of 0.9937, and the area under the receiver operating characteristic curve (AUC) of 0.999 is achieved when recordwise split data are considered. On the other hand, an accuracy of 0.914 and the AUC of 0.956 are obtained, while subjectwise split data are employed. These results suggest that CNN trained on recordwise split data gets overtrained on EEG data with a small number of subjects. The performance of DeprNet is remarkable compared with the other eight baseline models. Furthermore, on visualizing the last CNN layer, it is found that the values of right electrodes are prominent for depressed subjects, whereas, for normal subjects, the values of left electrodes are prominent.
AbstractList Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are needed. An electroencephalogram (EEG) is an instrument used to measure and record the brain's electrical activities. It can be utilized to produce the exact report on the level of depression. Previous studies proved the feasibility of the usage of EEG data and deep learning (DL) models for diagnosing mental illness. Therefore, this study proposes a DL-based convolutional neural network (CNN) called DeprNet for classifying the EEG data of depressed and normal subjects. Here, the Patient Health Questionnaire 9 score is used for quantifying the level of depression. The performance of DeprNet in two experiments, namely, the recordwise split and the subjectwise split, is presented in this study. The results attained by DeprNet have an accuracy of 0.9937, and the area under the receiver operating characteristic curve (AUC) of 0.999 is achieved when recordwise split data are considered. On the other hand, an accuracy of 0.914 and the AUC of 0.956 are obtained, while subjectwise split data are employed. These results suggest that CNN trained on recordwise split data gets overtrained on EEG data with a small number of subjects. The performance of DeprNet is remarkable compared with the other eight baseline models. Furthermore, on visualizing the last CNN layer, it is found that the values of right electrodes are prominent for depressed subjects, whereas, for normal subjects, the values of left electrodes are prominent.
Author Yazidi, Anis
Herrera-Viedma, Enrique
Seal, Ayan
Bajpai, Rishabh
Agnihotri, Jagriti
Krejcar, Ondrej
Author_xml – sequence: 1
  givenname: Ayan
  orcidid: 0000-0002-9939-2926
  surname: Seal
  fullname: Seal, Ayan
  email: ayanseal30@ieee.org
  organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
– sequence: 2
  givenname: Rishabh
  orcidid: 0000-0002-0542-8255
  surname: Bajpai
  fullname: Bajpai, Rishabh
  email: rishabhbajpai24@gmail.com
  organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
– sequence: 3
  givenname: Jagriti
  orcidid: 0000-0002-7527-7392
  surname: Agnihotri
  fullname: Agnihotri, Jagriti
  email: jagriti.agni@gmail.com
  organization: PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
– sequence: 4
  givenname: Anis
  orcidid: 0000-0001-7591-1659
  surname: Yazidi
  fullname: Yazidi, Anis
  email: anisy@oslomet.no
  organization: Research Group in Applied Artificial Intelligence, Oslo Metropolitan University, Oslo, Norway
– sequence: 5
  givenname: Enrique
  orcidid: 0000-0002-7922-4984
  surname: Herrera-Viedma
  fullname: Herrera-Viedma, Enrique
  email: viedma@decsai.ugr.es
  organization: Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
– sequence: 6
  givenname: Ondrej
  orcidid: 0000-0002-5992-2574
  surname: Krejcar
  fullname: Krejcar, Ondrej
  email: ondrej.krejcar@uhk.cz
  organization: Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic
BookMark eNotjctOwzAQRS1UJNrCHolNJNYpEz_imF3VF5VK2RSxjGJnglLaONgOiL8npazu6OrMuSMyaGyDhNwmMEkSUA-79fOEAk0mDARTSl2QYSKEjFWa0gEZAiRZrLhIr8jI-z0AyJTLIXmbY-u2GB6jaTRHbKOZbb7soQu1baItdq449BG-rfuIlq444t9VWdfTAU2om_fopEDvTx-v_lQsFqtrclkVB483_zkmu-ViN3uKNy-r9Wy6iWsKLMRVSSumK6GFKbk2QmdaSI0VGG5MWkqlBCjGlNaoS1YoCkaWWmgtBDUc2Jjcn7Wts58d-pDvbeeafjGnPJOcSZbJnro7UzUi5q2rj4X7yXuvoEyxX3t2Xn0
CODEN IEIMAO
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3053999
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 9335239
Genre orig-research
GrantInformation_xml – fundername: Malaysia Research University Network (MRUN)
  grantid: Vot 4L876
– fundername: “Smart Solutions in Ubiquitous Computing Environments”, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic
  grantid: UHK-FIM-GE-2021
– fundername: Fundamental Research Grant Scheme (FRGS)
  grantid: Vot5F073
– fundername: “Prediction of diseases through computer assisted diagnosis system using images captured by minimally-invasive and non-invasive modalities”, Computer Science and Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur India
  grantid: SPARCMHRD-231
– fundername: Ministry of Education Malaysia for the completion of the research
– fundername: Universiti Teknologi Malaysia (UTM) under Research University
  grantid: Vot-20H04
  funderid: 10.13039/501100005417
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-i203t-fd2f3bf5b5cd4bc5b8b57bef0c4cc6d799509339bbebd3a920c7db5bb552c403
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:17:31 EDT 2025
Wed Aug 27 02:44:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-fd2f3bf5b5cd4bc5b8b57bef0c4cc6d799509339bbebd3a920c7db5bb552c403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5992-2574
0000-0001-7591-1659
0000-0002-0542-8255
0000-0002-7527-7392
0000-0002-9939-2926
0000-0002-7922-4984
PQID 2487437387
PQPubID 85462
PageCount 13
ParticipantIDs proquest_journals_2487437387
ieee_primary_9335239
PublicationCentury 2000
PublicationDate 20210000
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0007647
Score 2.6391528
Snippet Depression is a common reason for an increase in suicide cases worldwide. Thus, to mitigate the effects of depression, accurate diagnosis and treatment are...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Brain modeling
Convolution
Convolutional neural network (CNN)
Depression
Electrodes
Electroencephalography
Feasibility studies
Feature extraction
Indexes
Machine learning
measurement of depression
Mental depression
Mental health
Neural networks
pattern classification
Support vector machines
visualization
Title DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG
URI https://ieeexplore.ieee.org/document/9335239
https://www.proquest.com/docview/2487437387
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7agqAHH61itcoePJo03WSTxlvpwyq0p4q9hczuBERIS5t68Ne7m0cR9eAtkGRZdmfn-c23AHfKd0ibBbQkNy052oRZsXK1MvQ4Oj7FHuVE2rO5P33xnpdiWYP7fS8MEeXgM7LNY17LVyu5M6mybmgahNywDnUduBW9WnutG_hewY_Z0wdYewVVSdIJu4unmQ4Eec_Wsq3tcVhepPJL--YmZXICs2oyBZLk3d5laMvPHzyN_53tKRyXviUbFMJwBjVKm3D0jXGwCQc54lNuW_A6ovVmTtkDG7AR0ZoNV-lHKYfMUHbokeYFRpxNKgQX0y6u_toUHvRwbFTBaFOWQw_YePx4DovJeDGcWuUtC9Ybd9zMShRPXEwECqk8lAL7KAKkxJGelL4yhHEm6xEiEio3DrkjA4UCUQguPce9gEa6SukSGDlujImvOOkXnKuQksTrk-qbflVXija0zCpF64JHIyoXqA2dah-i8gBtI64DqZx1Kbj6-69rODR7WmRDOtDINju60f5Bhre5YHwB2Z-5Og
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gxqgHH6ARRe3BowtLd7uw3ggPQYETRm4bpp1NjMlCYPHgr7fdBzHqwVuT7TZNO52ZznzzFeBOeTZps4CW5KYkR5swa64crQxdjrZHc5cSIu3xxBu8uE8zMSvA_bYWhogS8BnVTDPJ5auF3JhQWd03BUKOvwO72u6LRlqttdW7Tc9NGTIb-ghrvyBPStp-fToc66sgb9S0dGuL7GdPqfzSv4lR6R_DOJ9OiiV5r21irMnPH0yN_53vCRxl3iVrp-JwCgWKSnD4jXOwBHsJ5lOuy_DapeVqQvEDa7Mu0ZJ1FtFHJonMkHbokSYpSpz1cwwX006u7m1SD3o41s2BtBFLwAes13s8g2m_N-0MrOydBeuN205shYqHDoYChVQuSoEtFE2k0JaulJ4ylHEm7uEjEipn7nNbNhUKRCG4dG3nHIrRIqILYGQ7cww9xUl_4Fz5FIZui1TLVKw6UlSgbFYpWKZMGkG2QBWo5vsQZEdoHXB9lUp4l5qXf_91C_uD6XgUjIaT5ys4MPubxkaqUIxXG7rW3kKMN4mQfAGw_ryD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeprNet%3A+A+Deep+Convolution+Neural+Network+Framework+for+Detecting+Depression+Using+EEG&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Seal%2C+Ayan&rft.au=Bajpai%2C+Rishabh&rft.au=Agnihotri%2C+Jagriti&rft.au=Yazidi%2C+Anis&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2021.3053999&rft.externalDocID=9335239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon