Class-Incremental Learning for Semantic Segmentation Re-Using Neither Old Data Nor Old Labels
While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we pre...
Saved in:
Published in | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.09.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ITSC45102.2020.9294483 |
Cover
Abstract | While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we present a technique implementing class-incremental learning for semantic segmentation without using the labeled data the model was initially trained on. Previous approaches still either rely on labels for both old and new classes, or fail to properly distinguish between them. We show how to overcome these problems with a novel class-incremental learning technique, which nonetheless requires labels only for the new classes. Specifically, (i) we introduce a new loss function that neither relies on old data nor on old labels, (ii) we show how new classes can be integrated in a modular fashion into pretrained semantic segmentation models, and finally (iii) we re-implement previous approaches in a unified setting to compare them to ours. We evaluate our method on the Cityscapes dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute reaching a result, which is only 2.2% absolute below the upper performance limit of single-stage training, relying on all data and labels simultaneously. |
---|---|
AbstractList | While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we present a technique implementing class-incremental learning for semantic segmentation without using the labeled data the model was initially trained on. Previous approaches still either rely on labels for both old and new classes, or fail to properly distinguish between them. We show how to overcome these problems with a novel class-incremental learning technique, which nonetheless requires labels only for the new classes. Specifically, (i) we introduce a new loss function that neither relies on old data nor on old labels, (ii) we show how new classes can be integrated in a modular fashion into pretrained semantic segmentation models, and finally (iii) we re-implement previous approaches in a unified setting to compare them to ours. We evaluate our method on the Cityscapes dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute reaching a result, which is only 2.2% absolute below the upper performance limit of single-stage training, relying on all data and labels simultaneously. |
Author | Donn, Philipp Klingner, Marvin Fingscheidt, Tim Bar, Andreas |
Author_xml | – sequence: 1 givenname: Marvin surname: Klingner fullname: Klingner, Marvin email: m.klingner@tu-bs.de organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106 – sequence: 2 givenname: Andreas surname: Bar fullname: Bar, Andreas email: andreas.baer@tu-bs.de organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106 – sequence: 3 givenname: Philipp surname: Donn fullname: Donn, Philipp email: p.donn@tu-bs.de organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106 – sequence: 4 givenname: Tim surname: Fingscheidt fullname: Fingscheidt, Tim email: t.fingscheidt@tu-bs.de organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106 |
BookMark | eNotj01qwzAUhFVoFk3aExSKLmBXepJraVncP4NJoHGWJSjWUyqw5SJr09vXTbKaGWYY-JbkOowBCXngLOec6ce63Vay4AxyYMByDVpKJa7IkpeguORSyxvyVfVmmrI6dBEHDMn0tEETgw9H6sZItziYkHw3m-OpT34M9BOz3fQ_WaNP3xjpprf0xSRD1-M5NOaA_XRLFs70E95ddEXat9e2-siazXtdPTeZByZS5gQXWggAbVWpHWL5VHAtQVirQQEvOwHC8BmjcModrCrAge1muBlCFWJF7s-3HhH3P9EPJv7uL8DiDyi6TvM |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ITSC45102.2020.9294483 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728141494 9781728141497 |
EndPage | 8 |
ExternalDocumentID | 9294483 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i203t-f313933229d879fee76519423dd928217c323a12025f8fbd852f2dc451149853 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:19 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-f313933229d879fee76519423dd928217c323a12025f8fbd852f2dc451149853 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9294483 |
PublicationCentury | 2000 |
PublicationDate | 2020-Sept.-20 |
PublicationDateYYYYMMDD | 2020-09-20 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) |
PublicationTitleAbbrev | ITSC |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9313782 |
Snippet | While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Data models Image segmentation Iron Predictive models Semantics Task analysis Training |
Title | Class-Incremental Learning for Semantic Segmentation Re-Using Neither Old Data Nor Old Labels |
URI | https://ieeexplore.ieee.org/document/9294483 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjza0bUdW88oUaNoBBMuhvQnIcIwZFz8633dJkbjwezy1jTb8trme-2-7z2ELhgXzOiMk8wZTUTmLdEi4YQaIXtWSAtXYFsMezcv4m6STBrocquFcc6V5DMXBbP8l29XZhOOyroA5bCb4E3UhGlWabVq0W9MZfd2POoLmGJBXsVoVHf-UTWlBI3BLnr4el3FFXmLNoWOzMevTIz__Z491PmW5-GnLfDso4bL2-i1LG9JYL1XJ35qgevcqTMMgSkeuSU4cW7AmC1rwVGOnx0pSQN46II4Y40fFxZfqULh4aq6uVca4LODxoPrcf-G1LUTyJxRXhDPIbTjsFqlzVLpnUt7EKtB7GSthF1WnBrOuIrBU4nPvLZZwjyzJmQrExIg_AC18lXuDhG23BupMqdTqkSiwGK0R50SKvYOnneE2sEz0_cqO8a0dsrx380naCeMTmBcMHqKWsV6484A1gt9Xo7nJ4Aco2w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCIU8d2vuYCaqENiAapC6oc26kq2hRV6cKv55yEIhADynKJrCQ623pn-707hK4YF0ylISehUSkRYaZJKjxOqBKRr0Wk4bJsi9jvvYj7sTduoOuNFsYYU5LPjGPN8ixfL9XabpV1AMphNcG30DbgvvAqtVYt-3Vp1Okno66AQWYFVow6dfMfdVNK2LjbQ8OvD1ZskTdnXaSO-viVi_G_f7SP2t8CPfy0gZ4D1DB5C72WBS4JzPhqz0_OcZ09dYohNMUjswA3zhQY00UtOcrxsyElbQDHxsozVvhxrvGNLCSOl9XNQKYAoG2U3N0m3R6pqyeQGaO8IBmH4I7DfI10GESZMYEP0RpET1pHsM5yA8UZly54ysvCLNWhxzKmlc1XJiIA8UPUzJe5OUJY80xFMjRpQKXwJFiM-tRIId3MwPuOUct6ZvJe5ceY1E45-fvxJdrpJcPBZNCPH07Rru0py79g9Aw1i9XanAPIF-lF2befPuymuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+23rd+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Class-Incremental+Learning+for+Semantic+Segmentation+Re-Using+Neither+Old+Data+Nor+Old+Labels&rft.au=Klingner%2C+Marvin&rft.au=Bar%2C+Andreas&rft.au=Donn%2C+Philipp&rft.au=Fingscheidt%2C+Tim&rft.date=2020-09-20&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FITSC45102.2020.9294483&rft.externalDocID=9294483 |