Class-Incremental Learning for Semantic Segmentation Re-Using Neither Old Data Nor Old Labels

While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we pre...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) pp. 1 - 8
Main Authors Klingner, Marvin, Bar, Andreas, Donn, Philipp, Fingscheidt, Tim
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2020
Subjects
Online AccessGet full text
DOI10.1109/ITSC45102.2020.9294483

Cover

Abstract While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we present a technique implementing class-incremental learning for semantic segmentation without using the labeled data the model was initially trained on. Previous approaches still either rely on labels for both old and new classes, or fail to properly distinguish between them. We show how to overcome these problems with a novel class-incremental learning technique, which nonetheless requires labels only for the new classes. Specifically, (i) we introduce a new loss function that neither relies on old data nor on old labels, (ii) we show how new classes can be integrated in a modular fashion into pretrained semantic segmentation models, and finally (iii) we re-implement previous approaches in a unified setting to compare them to ours. We evaluate our method on the Cityscapes dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute reaching a result, which is only 2.2% absolute below the upper performance limit of single-stage training, relying on all data and labels simultaneously.
AbstractList While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of classes, presenting a major limitation when developing new autonomous driving systems with the need of additional classes. In this paper we present a technique implementing class-incremental learning for semantic segmentation without using the labeled data the model was initially trained on. Previous approaches still either rely on labels for both old and new classes, or fail to properly distinguish between them. We show how to overcome these problems with a novel class-incremental learning technique, which nonetheless requires labels only for the new classes. Specifically, (i) we introduce a new loss function that neither relies on old data nor on old labels, (ii) we show how new classes can be integrated in a modular fashion into pretrained semantic segmentation models, and finally (iii) we re-implement previous approaches in a unified setting to compare them to ours. We evaluate our method on the Cityscapes dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute reaching a result, which is only 2.2% absolute below the upper performance limit of single-stage training, relying on all data and labels simultaneously.
Author Donn, Philipp
Klingner, Marvin
Fingscheidt, Tim
Bar, Andreas
Author_xml – sequence: 1
  givenname: Marvin
  surname: Klingner
  fullname: Klingner, Marvin
  email: m.klingner@tu-bs.de
  organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106
– sequence: 2
  givenname: Andreas
  surname: Bar
  fullname: Bar, Andreas
  email: andreas.baer@tu-bs.de
  organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106
– sequence: 3
  givenname: Philipp
  surname: Donn
  fullname: Donn, Philipp
  email: p.donn@tu-bs.de
  organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106
– sequence: 4
  givenname: Tim
  surname: Fingscheidt
  fullname: Fingscheidt, Tim
  email: t.fingscheidt@tu-bs.de
  organization: Institute for Communications Technology, Technische Universität Braunschweig,Schleinitzstr,Braunschweig,Germany,22, 38106
BookMark eNotj01qwzAUhFVoFk3aExSKLmBXepJraVncP4NJoHGWJSjWUyqw5SJr09vXTbKaGWYY-JbkOowBCXngLOec6ce63Vay4AxyYMByDVpKJa7IkpeguORSyxvyVfVmmrI6dBEHDMn0tEETgw9H6sZItziYkHw3m-OpT34M9BOz3fQ_WaNP3xjpprf0xSRD1-M5NOaA_XRLFs70E95ddEXat9e2-siazXtdPTeZByZS5gQXWggAbVWpHWL5VHAtQVirQQEvOwHC8BmjcModrCrAge1muBlCFWJF7s-3HhH3P9EPJv7uL8DiDyi6TvM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC45102.2020.9294483
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728141494
9781728141497
EndPage 8
ExternalDocumentID 9294483
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-f313933229d879fee76519423dd928217c323a12025f8fbd852f2dc451149853
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:19 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-f313933229d879fee76519423dd928217c323a12025f8fbd852f2dc451149853
PageCount 8
ParticipantIDs ieee_primary_9294483
PublicationCentury 2000
PublicationDate 2020-Sept.-20
PublicationDateYYYYMMDD 2020-09-20
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9313782
Snippet While neural networks trained for semantic segmentation are essential for perception in autonomous driving, most current algorithms assume a fixed number of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data models
Image segmentation
Iron
Predictive models
Semantics
Task analysis
Training
Title Class-Incremental Learning for Semantic Segmentation Re-Using Neither Old Data Nor Old Labels
URI https://ieeexplore.ieee.org/document/9294483
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjza0bUdW88oUaNoBBMuhvQnIcIwZFz8633dJkbjwezy1jTb8trme-2-7z2ELhgXzOiMk8wZTUTmLdEi4YQaIXtWSAtXYFsMezcv4m6STBrocquFcc6V5DMXBbP8l29XZhOOyroA5bCb4E3UhGlWabVq0W9MZfd2POoLmGJBXsVoVHf-UTWlBI3BLnr4el3FFXmLNoWOzMevTIz__Z491PmW5-GnLfDso4bL2-i1LG9JYL1XJ35qgevcqTMMgSkeuSU4cW7AmC1rwVGOnx0pSQN46II4Y40fFxZfqULh4aq6uVca4LODxoPrcf-G1LUTyJxRXhDPIbTjsFqlzVLpnUt7EKtB7GSthF1WnBrOuIrBU4nPvLZZwjyzJmQrExIg_AC18lXuDhG23BupMqdTqkSiwGK0R50SKvYOnneE2sEz0_cqO8a0dsrx380naCeMTmBcMHqKWsV6484A1gt9Xo7nJ4Aco2w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCIU8d2vuYCaqENiAapC6oc26kq2hRV6cKv55yEIhADynKJrCQ623pn-707hK4YF0ylISehUSkRYaZJKjxOqBKRr0Wk4bJsi9jvvYj7sTduoOuNFsYYU5LPjGPN8ixfL9XabpV1AMphNcG30DbgvvAqtVYt-3Vp1Okno66AQWYFVow6dfMfdVNK2LjbQ8OvD1ZskTdnXaSO-viVi_G_f7SP2t8CPfy0gZ4D1DB5C72WBS4JzPhqz0_OcZ09dYohNMUjswA3zhQY00UtOcrxsyElbQDHxsozVvhxrvGNLCSOl9XNQKYAoG2U3N0m3R6pqyeQGaO8IBmH4I7DfI10GESZMYEP0RpET1pHsM5yA8UZly54ysvCLNWhxzKmlc1XJiIA8UPUzJe5OUJY80xFMjRpQKXwJFiM-tRIId3MwPuOUct6ZvJe5ceY1E45-fvxJdrpJcPBZNCPH07Rru0py79g9Aw1i9XanAPIF-lF2befPuymuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+23rd+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Class-Incremental+Learning+for+Semantic+Segmentation+Re-Using+Neither+Old+Data+Nor+Old+Labels&rft.au=Klingner%2C+Marvin&rft.au=Bar%2C+Andreas&rft.au=Donn%2C+Philipp&rft.au=Fingscheidt%2C+Tim&rft.date=2020-09-20&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FITSC45102.2020.9294483&rft.externalDocID=9294483