Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation

Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While exi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 11336 - 11343
Main Authors Wang, Ruiqi, Wang, Weizheng, Min, Byung-Cheol
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse rein-forcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at: https://sites.google.com/view/san-fapl.
AbstractList Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse rein-forcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at: https://sites.google.com/view/san-fapl.
Author Wang, Ruiqi
Wang, Weizheng
Min, Byung-Cheol
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Wang
  fullname: Wang, Ruiqi
  email: wang5357@purdue.edu
  organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA
– sequence: 2
  givenname: Weizheng
  surname: Wang
  fullname: Wang, Weizheng
  email: wz.w.robot@gmail.com
  organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA
– sequence: 3
  givenname: Byung-Cheol
  surname: Min
  fullname: Min, Byung-Cheol
  email: minb@purdue.edu
  organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA
BookMark eNotkMFKAzEUAKMo2NZ-gSD5ga0vyW6SdyzFamGx2uq5vF1fSrRmJV0q_XsFe5rbMMxQXKQusRC3CiZKAd4tVst16azSEw1aTxC9ssqeiaGytiodaqfPxUCryhTgrb0S4_3-AwAUOPRoB-JlzvzeUPtZcAixjZx6OW37eGD5nDlw5tSyrJlyimkrQ5flumsj7XZHOf2hzHLVNV0vn-gQt9THLl2Ly0C7PY9PHIm3-f3r7LGolw-L2bQuogbTF0EZ4DKEioMH9ghGBTIVNI125Nmit1BW5P7qKtSmhIYRkdBgUNo7MiNx8--NzLz5zvGL8nFzOmB-AeFuUho
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS47612.2022.9981616
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665479272
9781665479271
EISSN 2153-0866
EndPage 11343
ExternalDocumentID 9981616
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1846221
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-f130e4ff5ef80e89031fa350bb27a8e6986045a7edb592340be999a939f1287a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-f130e4ff5ef80e89031fa350bb27a8e6986045a7edb592340be999a939f1287a3
PageCount 8
ParticipantIDs ieee_primary_9981616
PublicationCentury 2000
PublicationDate 2022-Oct.-23
PublicationDateYYYYMMDD 2022-10-23
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.3608599
Snippet Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in...
SourceID ieee
SourceType Publisher
StartPage 11336
SubjectTerms Behavioral sciences
Collision avoidance
Navigation
Reinforcement learning
Source coding
Space exploration
Trajectory
Title Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation
URI https://ieeexplore.ieee.org/document/9981616
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA3bnvTFj038Jg8-2i5t0o88DnFMwanTwd5Gkt2ITFYZnaK_3tu021R88K20pA25NOfcm5wTQs6YkYFNmfEYWOaJWDCcB5X1bKSQnGtjuSrqkDf9uDcU16NoVCPnKy0MALjNZ-AXl24tf5KZRVEqa2NqgAQlrpM6Jm6lVmtdT2GJTGVciYADJttXg9sHgVl6IbcKQ79q_OMUFQci3S1ys_x8uXdk6i9y7ZvPX86M_-3fNmmt5Xr0bgVEO6QGs12y-c1psEnuu_hQKzP1wHlG4Htox0112HLpNUsrs9UnikyWlsLdlw_aeVdzoINMZzntqzfnyZHNWmTYvXy86HnVaQrec8h47llEKxDWRoCxgVTi32wVj5jWYaJSiGUaI71TCfYmQtYnmAYkj0pyaRHDEsX3SGOWzWCf0NQE0gRKSGOtUEkgHdM0asJDSPkEDkizGJzxa2mYMa7G5fDv20dkowhQAQghPyaNfL6AE0T6XJ-6EH8BiBeoww
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0QD-rFDzB-24NHF7rf2yMxElBARUi4kbZMjcHsGrJo9Nc7211AjQdvm266mXSyfa_TvldCLpjito6YshhoZnmBx3AeFNrSvkByLpV2RVaH7PaC1tC7GfmjErlcamEAwBw-g1r2aPbyJ4maZ6WyOi4NkKAEa2Qdcd-3c7XWqqLCQh7xoJAB24zX2_27Rw_X6ZngynFqRfcf96gYGGluk-4igPz0yLQ2T2VNff7yZvxvhDukuhLs0fslFO2SEsR7ZOub12CFPDTxpRRqaoFxjcDv0IaZ7LDnwm2WFnarTxS5LM2luy8ftPEuZkD7iUxS2hNvxpUjiatk2LweXLWs4j4F69lhbmppxCvwtPYBswMRx_9ZC9dnUjqhiCDgUYAET4QYjY-8z2MSkD4K7nKNKBYKd5-U4ySGA0IjZXNlC48rrT0R2txwTSUmrgORO4FDUskGZ_yaW2aMi3E5-rv5nGy0Bt3OuNPu3R6TzSxZGTw47gkpp7M5nCLup_LMpPsLhr-sDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Feedback-efficient+Active+Preference+Learning+for+Socially+Aware+Robot+Navigation&rft.au=Wang%2C+Ruiqi&rft.au=Wang%2C+Weizheng&rft.au=Min%2C+Byung-Cheol&rft.date=2022-10-23&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=11336&rft.epage=11343&rft_id=info:doi/10.1109%2FIROS47612.2022.9981616&rft.externalDocID=9981616