Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation
Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While exi...
Saved in:
Published in | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 11336 - 11343 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse rein-forcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at: https://sites.google.com/view/san-fapl. |
---|---|
AbstractList | Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse rein-forcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at: https://sites.google.com/view/san-fapl. |
Author | Wang, Ruiqi Wang, Weizheng Min, Byung-Cheol |
Author_xml | – sequence: 1 givenname: Ruiqi surname: Wang fullname: Wang, Ruiqi email: wang5357@purdue.edu organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA – sequence: 2 givenname: Weizheng surname: Wang fullname: Wang, Weizheng email: wz.w.robot@gmail.com organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA – sequence: 3 givenname: Byung-Cheol surname: Min fullname: Min, Byung-Cheol email: minb@purdue.edu organization: Purdue University,SMART Laboratory,Department of Computer and Information Technology,West Lafayette,IN,USA |
BookMark | eNotkMFKAzEUAKMo2NZ-gSD5ga0vyW6SdyzFamGx2uq5vF1fSrRmJV0q_XsFe5rbMMxQXKQusRC3CiZKAd4tVst16azSEw1aTxC9ssqeiaGytiodaqfPxUCryhTgrb0S4_3-AwAUOPRoB-JlzvzeUPtZcAixjZx6OW37eGD5nDlw5tSyrJlyimkrQ5flumsj7XZHOf2hzHLVNV0vn-gQt9THLl2Ly0C7PY9PHIm3-f3r7LGolw-L2bQuogbTF0EZ4DKEioMH9ghGBTIVNI125Nmit1BW5P7qKtSmhIYRkdBgUNo7MiNx8--NzLz5zvGL8nFzOmB-AeFuUho |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IROS47612.2022.9981616 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665479272 9781665479271 |
EISSN | 2153-0866 |
EndPage | 11343 |
ExternalDocumentID | 9981616 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1846221 funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IF 6IH 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-f130e4ff5ef80e89031fa350bb27a8e6986045a7edb592340be999a939f1287a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:27:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-f130e4ff5ef80e89031fa350bb27a8e6986045a7edb592340be999a939f1287a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9981616 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-23 |
PublicationDateYYYYMMDD | 2022-10-23 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems |
PublicationTitleAbbrev | IROS |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001079896 |
Score | 2.3608599 |
Snippet | Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 11336 |
SubjectTerms | Behavioral sciences Collision avoidance Navigation Reinforcement learning Source coding Space exploration Trajectory |
Title | Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation |
URI | https://ieeexplore.ieee.org/document/9981616 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA3bnvTFj038Jg8-2i5t0o88DnFMwanTwd5Gkt2ITFYZnaK_3tu021R88K20pA25NOfcm5wTQs6YkYFNmfEYWOaJWDCcB5X1bKSQnGtjuSrqkDf9uDcU16NoVCPnKy0MALjNZ-AXl24tf5KZRVEqa2NqgAQlrpM6Jm6lVmtdT2GJTGVciYADJttXg9sHgVl6IbcKQ79q_OMUFQci3S1ys_x8uXdk6i9y7ZvPX86M_-3fNmmt5Xr0bgVEO6QGs12y-c1psEnuu_hQKzP1wHlG4Htox0112HLpNUsrs9UnikyWlsLdlw_aeVdzoINMZzntqzfnyZHNWmTYvXy86HnVaQrec8h47llEKxDWRoCxgVTi32wVj5jWYaJSiGUaI71TCfYmQtYnmAYkj0pyaRHDEsX3SGOWzWCf0NQE0gRKSGOtUEkgHdM0asJDSPkEDkizGJzxa2mYMa7G5fDv20dkowhQAQghPyaNfL6AE0T6XJ-6EH8BiBeoww |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0QD-rFDzB-24NHF7rf2yMxElBARUi4kbZMjcHsGrJo9Nc7211AjQdvm266mXSyfa_TvldCLpjito6YshhoZnmBx3AeFNrSvkByLpV2RVaH7PaC1tC7GfmjErlcamEAwBw-g1r2aPbyJ4maZ6WyOi4NkKAEa2Qdcd-3c7XWqqLCQh7xoJAB24zX2_27Rw_X6ZngynFqRfcf96gYGGluk-4igPz0yLQ2T2VNff7yZvxvhDukuhLs0fslFO2SEsR7ZOub12CFPDTxpRRqaoFxjcDv0IaZ7LDnwm2WFnarTxS5LM2luy8ftPEuZkD7iUxS2hNvxpUjiatk2LweXLWs4j4F69lhbmppxCvwtPYBswMRx_9ZC9dnUjqhiCDgUYAET4QYjY-8z2MSkD4K7nKNKBYKd5-U4ySGA0IjZXNlC48rrT0R2txwTSUmrgORO4FDUskGZ_yaW2aMi3E5-rv5nGy0Bt3OuNPu3R6TzSxZGTw47gkpp7M5nCLup_LMpPsLhr-sDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Feedback-efficient+Active+Preference+Learning+for+Socially+Aware+Robot+Navigation&rft.au=Wang%2C+Ruiqi&rft.au=Wang%2C+Weizheng&rft.au=Min%2C+Byung-Cheol&rft.date=2022-10-23&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=11336&rft.epage=11343&rft_id=info:doi/10.1109%2FIROS47612.2022.9981616&rft.externalDocID=9981616 |