A Fluorescent Thin Film-Based Miniaturized Transcutaneous Carbon Dioxide Monitor

Arterial blood gases, oxygen, carbon dioxide, and the potential of hydrogen are the key indicators of respiratory status and should be continuously monitored for patients whose respiratory vital signs may alter frequently and rapidly. The arterial partial pressure of oxygen and carbon dioxide can be...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) pp. 1 - 5
Main Authors Tufan, Tuna B., Guler, Ulkuhan
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.10.2021
Subjects
Online AccessGet full text
DOI10.1109/BioCAS49922.2021.9644967

Cover

Loading…
Abstract Arterial blood gases, oxygen, carbon dioxide, and the potential of hydrogen are the key indicators of respiratory status and should be continuously monitored for patients whose respiratory vital signs may alter frequently and rapidly. The arterial partial pressure of oxygen and carbon dioxide can be estimated with transcutaneous monitoring, which measures the partial pressure of oxygen and carbon dioxide diffusing from the skin. However, requiring a heating element and a large, expensive bedside monitor are the limitations of the traditional transcutaneous blood gas monitors preventing continuous monitoring outside a clinical setting. Therefore, we propose a miniaturized fluorescent thin film-based prototype, envisioned as a first-of-its-kind continuous transcutaneous carbon dioxide monitoring wearable device. The computation principle relies on measuring the fluorescence intensity of a carbon dioxide-sensitive thin film. The prototype monitor estimates the partial pressure of carbon dioxide ranging from 0 to 75 mmHg, covering the clinically significant range, 35-45 mmHg for healthy humans. The prototype is designed with a small form factor on a 60 mm×55 mm printed circuit board and consumes 64.33 mW, suitable to be translated into a wearable device in further design stages.
AbstractList Arterial blood gases, oxygen, carbon dioxide, and the potential of hydrogen are the key indicators of respiratory status and should be continuously monitored for patients whose respiratory vital signs may alter frequently and rapidly. The arterial partial pressure of oxygen and carbon dioxide can be estimated with transcutaneous monitoring, which measures the partial pressure of oxygen and carbon dioxide diffusing from the skin. However, requiring a heating element and a large, expensive bedside monitor are the limitations of the traditional transcutaneous blood gas monitors preventing continuous monitoring outside a clinical setting. Therefore, we propose a miniaturized fluorescent thin film-based prototype, envisioned as a first-of-its-kind continuous transcutaneous carbon dioxide monitoring wearable device. The computation principle relies on measuring the fluorescence intensity of a carbon dioxide-sensitive thin film. The prototype monitor estimates the partial pressure of carbon dioxide ranging from 0 to 75 mmHg, covering the clinically significant range, 35-45 mmHg for healthy humans. The prototype is designed with a small form factor on a 60 mm×55 mm printed circuit board and consumes 64.33 mW, suitable to be translated into a wearable device in further design stages.
Author Guler, Ulkuhan
Tufan, Tuna B.
Author_xml – sequence: 1
  givenname: Tuna B.
  surname: Tufan
  fullname: Tufan, Tuna B.
  email: ttufan@wpi.edu
  organization: Electrical ana Computer Engineering Worcester Polytechnic Institute,Worcester,MA,01609
– sequence: 2
  givenname: Ulkuhan
  surname: Guler
  fullname: Guler, Ulkuhan
  email: uguler@wpi.edu
  organization: Electrical ana Computer Engineering Worcester Polytechnic Institute,Worcester,MA,01609
BookMark eNotj8FKxDAURSPowhn9Ajf5gdYkbZpk2amOI8ygYF0PSfuCDzqJpC2oX2_FWRwud3Eu3BW5DDEAIZSznHNm7jcYm_qtNEaIXDDBc1OVpanUBVlxJfQCK9U1ea3pdphjgrGDMNH2AwPd4nDKNnaEnh4woJ3mhD9LaZMNYzdPNkCcR9rY5GKgDxi_sAd6iAGnmG7IlbfDCLfnXJP37WPb7LL9y9NzU-8zFKyYMgAvjOACKsO8he4PybUX1jple225By2lK5yQbjG6vnSGS-W1gk4bWazJ3f8uAsDxM-HJpu_j-WTxC9UVTtA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioCAS49922.2021.9644967
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728172047
9781728172040
EndPage 5
ExternalDocumentID 9644967
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-eef29212e690faecfaec518f2aab7ad8a1fe855b3b25b203cd4b9157f87ec8953
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:53 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-eef29212e690faecfaec518f2aab7ad8a1fe855b3b25b203cd4b9157f87ec8953
PageCount 5
ParticipantIDs ieee_primary_9644967
PublicationCentury 2000
PublicationDate 2021-Oct.-7
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS)
PublicationTitleAbbrev BIOCAS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8669435
Snippet Arterial blood gases, oxygen, carbon dioxide, and the potential of hydrogen are the key indicators of respiratory status and should be continuously monitored...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Carbon dioxide
Fluorescence
Pressure measurement
Printed circuits
Prototypes
Skin
Wearable computers
Title A Fluorescent Thin Film-Based Miniaturized Transcutaneous Carbon Dioxide Monitor
URI https://ieeexplore.ieee.org/document/9644967
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA3bnnxS2cRv8uCj6dq0aZrHbVqGMBnoYG8jH7dQnK2MFmS_3qTdJooPPhTaph8hl3JymnvORehOMGZbDCWx0TGJVBwTJSgjrhCSkzAr7Ttx8uw5ni6ipyVbdtD9QQsDAE3yGXhut1nLN6Wu3a-yobDgLWLeRV1L3Fqt1j45xxfDcV5ORi-RM1q1vI8G3u7yH3VTGthIj9Fs_8I2W-TNqyvl6e0vL8b_9ugEDb4Fenh-gJ5T1IGij-YjnK5r-4TGoAm7ipw4zdfvZGyRyuBZXuTOxTPf2oMGonRtZ4ZgqT-eyI0qC_yQl5-5Adx-6JsBWqSPr5Mp2RVMIDn1w4oAZFRYLAJLeTMJ2m0sSDIqpeLSJDLIILHBCRVlyt6hTaREwHiWcNCJYOEZ6hVlAecIc-1HQSQDsHQx4iaQNJTMl9wtc9pJDVygvhuN1UfribHaDcTl36ev0JGLSJMEx69Rr9rUcGPBvFK3TRS_AMUVoZM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvSksonf5uDRdG3X9OO4TcvUdQzcYLeRj1cIzlZGC7K_3qTdJooHD4EmJWnII_zymvf7PYTuIkr1G-kSXwqfeNz3CY9cSkwiJENh5sI25ORk7A9n3vOczhvofseFAYAq-Aws81jd5ctclOZXWSfS4B35wR7ap4aMW7O1tuE5dtTpq3zQe_WM1Kr2_FzH2nT4kTmlAo74CCXbT9bxIm9WWXBLrH-pMf53Tseo_U3Rw5Md-JygBmQtNOnheFnqESqJJmxycuJYLd9JX2OVxInKlNHxVGtdqUBKlPpsCNr5xwO24nmGH1T-qSTgequv2mgWP04HQ7JJmUCUa3cLApC6kUYj0E5vykCYQp0wdRnjAZMhc1IItXm63KVc9xDS45FDgzQMQIQR7Z6iZpZncIZwIGzP8ZgD2mH0Aukwt8uozQJz0amPNXCOWmY1Fh-1KsZisxAXfzffooPhNBktRk_jl0t0aKxThcQFV6hZrEq41tBe8JvKol9gNaTb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=A+Fluorescent+Thin+Film-Based+Miniaturized+Transcutaneous+Carbon+Dioxide+Monitor&rft.au=Tufan%2C+Tuna+B.&rft.au=Guler%2C+Ulkuhan&rft.date=2021-10-07&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBioCAS49922.2021.9644967&rft.externalDocID=9644967