Online Policy Learning for Opportunistic Mobile Computation Offloading

This work considers opportunistic mobile computation offloading between a requestor and a helper. The requestor device may offload some of its computation-intensive tasks to the helper device. The availability of the helper, however, is random. The objective of this work is to find the optimum offlo...

Full description

Saved in:
Bibliographic Details
Published inIEEE Global Communications Conference (Online) pp. 1 - 6
Main Authors Mu, Siqi, Zhong, Zhangdui, Zhao, Dongmei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2020
Subjects
Online AccessGet full text
ISSN2576-6813
DOI10.1109/GLOBECOM42002.2020.9322467

Cover

Loading…
Abstract This work considers opportunistic mobile computation offloading between a requestor and a helper. The requestor device may offload some of its computation-intensive tasks to the helper device. The availability of the helper, however, is random. The objective of this work is to find the optimum offloading decisions for the requestor to minimize its energy consumption, subject to a mean delay constraint of the tasks. The problem is formulated as a constrained Markov decision process by taking into consideration the random task arrivals, availability of the helper, and time-varying channel conditions. Optimal offline solution is first obtained through linear programming. An online algorithm is then designed to learn the optimum offloading policy by introducing post-decision states into the problem. Simulation results demonstrate that the proposed online algorithm achieves close-to-optimum performance with much lower complexity.
AbstractList This work considers opportunistic mobile computation offloading between a requestor and a helper. The requestor device may offload some of its computation-intensive tasks to the helper device. The availability of the helper, however, is random. The objective of this work is to find the optimum offloading decisions for the requestor to minimize its energy consumption, subject to a mean delay constraint of the tasks. The problem is formulated as a constrained Markov decision process by taking into consideration the random task arrivals, availability of the helper, and time-varying channel conditions. Optimal offline solution is first obtained through linear programming. An online algorithm is then designed to learn the optimum offloading policy by introducing post-decision states into the problem. Simulation results demonstrate that the proposed online algorithm achieves close-to-optimum performance with much lower complexity.
Author Mu, Siqi
Zhao, Dongmei
Zhong, Zhangdui
Author_xml – sequence: 1
  givenname: Siqi
  surname: Mu
  fullname: Mu, Siqi
  organization: State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University,Beijing,China
– sequence: 2
  givenname: Zhangdui
  surname: Zhong
  fullname: Zhong, Zhangdui
  organization: State Key Lab. of Rail Traffic Control and Safety, Beijing Jiaotong University,Beijing,China
– sequence: 3
  givenname: Dongmei
  surname: Zhao
  fullname: Zhao, Dongmei
  organization: McMaster University,Dept. of Electrical & Computer Engineering,Hamilton,ON,Canada
BookMark eNotj71OwzAURg0CiVLyBCwWe4p9nTjXI0RtQUoVBpgrxz_IKLWjJB369lRqp28550jfI7mLKTpCXjhbcc7U67Zp39d1uyuAMVgBA7ZSAqCQ1Q3JVIW8AuQICvGWLKCsZC6RiweSTdMfOyslF6DYgmza2Ifo6FfqgznRxukxhvhLfRppOwxpnI8xTHMwdJe60Dtap8NwnPUcUqSt933S9sw_kXuv-8ll112Sn836u_7Im3b7Wb81eQAm5txZIzouO65Qd8Ibi6pAbQ0WHQctS6UKyZhHrqzpKnAorPFYSMGF8wqUWJLnSzc45_bDGA56PO2vz8U_QVhQ0w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOBECOM42002.2020.9322467
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728182988
1728182980
EISSN 2576-6813
EndPage 6
ExternalDocumentID 9322467
Genre orig-research
GrantInformation_xml – fundername: Fundamental research funds for the central universities
  grantid: 2019YJS231
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-edc3b16b198ab3fcd8948adc84b12a65994600f819dcb72e83dcf846313ef9293
IEDL.DBID RIE
IngestDate Tue May 06 03:46:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-edc3b16b198ab3fcd8948adc84b12a65994600f819dcb72e83dcf846313ef9293
PageCount 6
ParticipantIDs ieee_primary_9322467
PublicationCentury 2000
PublicationDate 2020-Dec.
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationTitle IEEE Global Communications Conference (Online)
PublicationTitleAbbrev GLOCOM
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513290
Score 1.7582046
Snippet This work considers opportunistic mobile computation offloading between a requestor and a helper. The requestor device may offload some of its...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Delays
Energy consumption
Markov processes
Mobile handsets
Servers
Task analysis
Wireless communication
Title Online Policy Learning for Opportunistic Mobile Computation Offloading
URI https://ieeexplore.ieee.org/document/9322467
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkaWynrr1StVSIEgYqdati-4IQqKlQsvDrOSdpeYiBLYosy_Elue98331HyBWTKUYdggfCCBEgArdBKkAHYDPOhwxibSq1zwc5ncd3i8GiRa63tTAAUJHPIPSXVS7f5bb0R2V9nJPjh90mbQzc6lqt7XkK-mnB9UZXlEW6f3uf3IxHySz2PASMBHkUNhP86KRSOZLJHpltllDzR17DsjCh_filzvjfNe6T3lfJHn3cOqMD0oLVIdn9pjbYJZNaVpTWUsC0UVZ9pghbabL2ONyntvFForPc4M-C1h0fKtPRJMve8opv3yPzyfhpNA2aNgrBC49EEYCzwjBpmFapEZl1SscqdVbFhvFUDrSOEfVkCA2cNUMOSjibISwRTECG6Ekckc4qX8ExodJFAyV9Kk1JfEiMtnAkw3GgpHAaTkjX78hyXStlLJvNOP379hnZ8VapySHnpFO8l3CBLr4wl5VtPwHqeqU5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgALjxbxxgMjSWs7de0V1FKgaRhaqVsVOw5CoKZC6cKv55yk5SEGtiiyLMeX5PvOd_cdwBUVMXodnHlcc-4hAzdezK3yrEkZ61IbKF2ofY7EYBI8TDvTGlyva2GstUXymfXdZRHLTzKzdEdlLZyT4Ye9AZuI-4Eqq7XWJyqI1JyplbIobavW3TC66d1GYeAyEdAXZG2_muJHL5UCSvq7EK4WUWaQvPrLXPvm45c-439XuQfNr6I98rSGo32o2fkB7HzTG2xAvxQWJaUYMKm0VZ8JElcSLRwTd8FtfJVImGn8XZCy50NhPBKl6VtWZNw3YdLvjW8HXtVIwXthbZ57NjFcU6GpkrHmqUmkCmScGBloymLRUSpA3pMiOUiM7jIreWJSJCaccpsif-KHUJ9nc3sERCTtjhQumCYFPiT6WziS4jgrBU-UPYaG25HZotTKmFWbcfL37UvYGozD4Wx4P3o8hW1noTJV5Azq-fvSniPg5_qisPMnyMWoiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Global+Communications+Conference+%28Online%29&rft.atitle=Online+Policy+Learning+for+Opportunistic+Mobile+Computation+Offloading&rft.au=Mu%2C+Siqi&rft.au=Zhong%2C+Zhangdui&rft.au=Zhao%2C+Dongmei&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=2576-6813&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOBECOM42002.2020.9322467&rft.externalDocID=9322467