Real-Time Detection of Motorcyclist without Helmet using Cascade of CNNs on Edge-device

The real-time detection of traffic rule violators in a city-wide surveillance network is a highly desirable but challenging task because it needs to perform computationally complex analytics on the live video streams from large number of cameras, simultaneously. In this paper, we propose an efficien...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) pp. 1 - 8
Main Authors Singh, Dinesh, Vishnu, C., Mohan, C. Krishna
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2020
Subjects
Online AccessGet full text
DOI10.1109/ITSC45102.2020.9294747

Cover

Loading…
Abstract The real-time detection of traffic rule violators in a city-wide surveillance network is a highly desirable but challenging task because it needs to perform computationally complex analytics on the live video streams from large number of cameras, simultaneously. In this paper, we propose an efficient framework using edge computing to deploy a system for automatic detection of bike-riders without helmet. First, we propose a novel robust and compact method for the detection of the motorcyclists without helmet using convolutional neural networks (CNNs). Then, we scale it for the real-time performance on an edge-device by dropping redundant filters and quantizing the model weights. To reduce the network latency, we place the detector module on edge-devices in the cameras. The edge-nodes send their detected alerts to a central alert database where the end users access these alerts through a web interface. To evaluate the proposed method, we collected two datasets of real traffic videos, namely, IITH_Helmet_1 which contains sparse traffic and IITH_Helmet_2 which contains dense traffic. The experimental results show that our method achieves a high detection accuracy of\approx95% while maintaining the real-time processing speed of \approx22fps on Nvidia-TXI.
AbstractList The real-time detection of traffic rule violators in a city-wide surveillance network is a highly desirable but challenging task because it needs to perform computationally complex analytics on the live video streams from large number of cameras, simultaneously. In this paper, we propose an efficient framework using edge computing to deploy a system for automatic detection of bike-riders without helmet. First, we propose a novel robust and compact method for the detection of the motorcyclists without helmet using convolutional neural networks (CNNs). Then, we scale it for the real-time performance on an edge-device by dropping redundant filters and quantizing the model weights. To reduce the network latency, we place the detector module on edge-devices in the cameras. The edge-nodes send their detected alerts to a central alert database where the end users access these alerts through a web interface. To evaluate the proposed method, we collected two datasets of real traffic videos, namely, IITH_Helmet_1 which contains sparse traffic and IITH_Helmet_2 which contains dense traffic. The experimental results show that our method achieves a high detection accuracy of\approx95% while maintaining the real-time processing speed of \approx22fps on Nvidia-TXI.
Author Singh, Dinesh
Vishnu, C.
Mohan, C. Krishna
Author_xml – sequence: 1
  givenname: Dinesh
  surname: Singh
  fullname: Singh, Dinesh
  email: dinesh.singh@riken.jp
  organization: RIKEN Center for Advanced Intelligence Project,Japan
– sequence: 2
  givenname: C.
  surname: Vishnu
  fullname: Vishnu, C.
  organization: IIT Hyderabad,India
– sequence: 3
  givenname: C. Krishna
  surname: Mohan
  fullname: Mohan, C. Krishna
  email: ckm@iith.ac.in
  organization: IIT Hyderabad,India
BookMark eNotj8tKAzEYRiPowrY-gSB5gRlzm1yWMlZbqC3oiMuSZv7UwMxEJqnSt7diV2fznQ_OBF0OcQCE7igpKSXmftm81aKihJWMMFIaZoQS6gJNqGKaCiqMuEYfr2C7ogk94EfI4HKIA44ev8QcR3d0XUgZ_4T8GQ8ZL6DrIeNDCsMe1zY528LfuF6vEz5583YPRQvfwcEMXXnbJbg5c4ren-ZNvShWm-dl_bAqAiM8F-AqI61mxHDPJZfKeUWo95yDaLWsNOxOKV6DoJXZWdCmVcpJ4Qy3xgHlU3T7_xsAYPs1ht6Ox-25lf8CpAxOgg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC45102.2020.9294747
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728141494
9781728141497
EndPage 8
ExternalDocumentID 9294747
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-ec596a82093f36367cf701ff33e4d8658eb109f8e4159bae89d77c64c93a9ce13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:19 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ec596a82093f36367cf701ff33e4d8658eb109f8e4159bae89d77c64c93a9ce13
PageCount 8
ParticipantIDs ieee_primary_9294747
PublicationCentury 2000
PublicationDate 2020-Sept.-20
PublicationDateYYYYMMDD 2020-09-20
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0001314
Snippet The real-time detection of traffic rule violators in a city-wide surveillance network is a highly desirable but challenging task because it needs to perform...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Feature extraction
Head
Image edge detection
Lighting
Motorcycles
Real-time systems
Safety
Title Real-Time Detection of Motorcyclist without Helmet using Cascade of CNNs on Edge-device
URI https://ieeexplore.ieee.org/document/9294747
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0Xdq0TXOuG1NYEd1wt9Emr0PUVlx70L_el65OFA_SSykpCe-FfO8l3_dCyIXWymTgSQYphMwPpGGR9tAhbiZ5wLPIN_ZEd5qEk7l_swgWHXK51cIAQEM-A8e-Nmf5ptS13SobIpT7GP52SRcTt41WqxX9ulwNr2f3sY9TzMqrPO60jX_cmtKAxniXTL-623BFnpy6yhz98asS43_Hs0cG3_I8ersFnn3SgaJPHu4w5GNW0UGvoGoIVgUtczotMavW7_oZ_UntrmtZVxTB5gUqaknvKxqna0uSt43jJFlT_G9kVsAM2FVkQObj0SyesPbWBPbocVEx0IEKUwR2JXIRitDWHeJungsBaHcMOHB15iqPAKFbZSlEykipQ18rkSoNrjggvaIs4JDQFJOx0AgttXR9KXSUacwwDDceCHyiI9K3Rlm-bgpjLFt7HP_9-YTsWMdYsoXHT0mveqvhDBG9ys4bV34C0UuihQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBIUifOl-fQqoUmQtCKblViXyoEJIgmA_x6zmkoAjGgLFHkyNad5Xdnv3cm5EJKoVKwfQMS8AzH9ZURSBsdYqU-c1kaOEqf6EaxN5w61zN31iKXay0MANTkMzD1a32WrwpZ6a2yHkK5g-HvBtlE3HfESq3VyH4tJnqjyX3o4CTTAiubmU3zH_em1LAx2CHRV4crtsiTWZWpKT9-1WL874h2SfdboEdv19CzR1qQd8jDHQZ9htZ00Csoa4pVTouMRgXm1fJdPqNHqd53LaqSIty8QEk17X1Bw2SpafK6cRjHS4r_9dUCDAV6HemS6aA_CYdGc2-C8WgzXhogXeElCO2CZ9zjnq48xKws4xzQ8hhy4PrMRBYAgrdIEwiE8n3pOVLwREiw-D5p50UOB4QmmI55iktf-pbjcxmkEnMMxZQNHJ_gkHS0Ueavq9IY88YeR39_Pidbw0k0no9H8c0x2dZO0tQLm52QdvlWwSnie5me1W79BIlEpdU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+23rd+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Real-Time+Detection+of+Motorcyclist+without+Helmet+using+Cascade+of+CNNs+on+Edge-device&rft.au=Singh%2C+Dinesh&rft.au=Vishnu%2C+C.&rft.au=Mohan%2C+C.+Krishna&rft.date=2020-09-20&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FITSC45102.2020.9294747&rft.externalDocID=9294747