Representation Compensation Networks for Continual Semantic Segmentation
In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to deco...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7043 - 7054 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to decouple the representation learning of both old and new knowledge. The RC module consists of two dynamically evolved branches with one frozen and one trainable. Besides, we design a pooled cube knowledge distillation strategy on both spatial and channel dimensions to further enhance the plasticity and stability of the model. We conduct experiments on two challenging continual semantic segmentation scenarios, continual class segmentation and continual domain segmentation. Without any extra computational overhead and parameters during inference, our method outperforms state-of-the-art performance. The code is available at https://github.com/zhangchbin/RCIL. |
---|---|
AbstractList | In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to decouple the representation learning of both old and new knowledge. The RC module consists of two dynamically evolved branches with one frozen and one trainable. Besides, we design a pooled cube knowledge distillation strategy on both spatial and channel dimensions to further enhance the plasticity and stability of the model. We conduct experiments on two challenging continual semantic segmentation scenarios, continual class segmentation and continual domain segmentation. Without any extra computational overhead and parameters during inference, our method outperforms state-of-the-art performance. The code is available at https://github.com/zhangchbin/RCIL. |
Author | Zhang, Chang-Bin Liu, Xialei Xiao, Jia-Wen Cheng, Ming-Ming Chen, Ying-Cong |
Author_xml | – sequence: 1 givenname: Chang-Bin surname: Zhang fullname: Zhang, Chang-Bin organization: TMCC, CS, Nankai University – sequence: 2 givenname: Jia-Wen surname: Xiao fullname: Xiao, Jia-Wen organization: TMCC, CS, Nankai University – sequence: 3 givenname: Xialei surname: Liu fullname: Liu, Xialei email: xialei@nankai.edu.cn organization: TMCC, CS, Nankai University – sequence: 4 givenname: Ying-Cong surname: Chen fullname: Chen, Ying-Cong organization: The Hong Kong University of Science and Technology (Guangzhou) – sequence: 5 givenname: Ming-Ming surname: Cheng fullname: Cheng, Ming-Ming organization: TMCC, CS, Nankai University |
BookMark | eNo1j91Kw0AUhFdRsK19Ar3ICySes5s9u3spQa1QVOrPbdkkJxJtNiUbEd_eQPVqvmGYgZmLk9AHFuISIUMEd1W8PW20JGszCVJmAOTkkZgjkc7J5aSOxQyBVEoO3ZlYxvgBAEoikrMzsdrwfuDIYfRj24ek6Ls9h3gwDzx-98NnTJp-mJIwtuHL75Jn7vzE1QTv3X_zXJw2fhd5-acL8Xp781Ks0vXj3X1xvU5bCWpM2WtZGnaVyhtlS1s1Rtd1SegVed9YRzUaKW3uQPu81tJwiTUoo8FLrVEtxMVht2Xm7X5oOz_8bJ01DqazvwtJT7I |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52688.2022.00692 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665469463 9781665469463 |
EISSN | 1063-6919 |
EndPage | 7054 |
ExternalDocumentID | 9879046 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-ea52b7e9c34f38b8cf75ddb61a36aaf896d172284905a4d527eb1d03750a25513 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-ea52b7e9c34f38b8cf75ddb61a36aaf896d172284905a4d527eb1d03750a25513 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9879046 |
PublicationCentury | 2000 |
PublicationDate | 2022-June |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.5497816 |
Snippet | In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7043 |
SubjectTerms | Codes Computational modeling Computer vision Deep learning grouping and shape analysis Neural networks Representation learning Semantics Transfer/low-shot/long-tail learning; Segmentation |
Title | Representation Compensation Networks for Continual Semantic Segmentation |
URI | https://ieeexplore.ieee.org/document/9879046 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7O3h00G1d152JhJhACIrhRtquNcQwjIyLf73vbQON8eB26ZYsa163vvfa7_sewJ3kGj8URZgqk_hcOOYrwZlvXJAYHiaB1kQUHk_EaM4fF_GiAfcHLoy1tgSf2R41y738bGN2tFTWx_w4xXyuCU1M3Cqu1mE9JcJMRqSyZscFLO0PXqYzEjMhAFdIspyC9jt_1FApXciwDeP9yyvkyFtvV-ie-fyly_jf3h1D95us500PbugEGjY_hXYdXXr1v7vtwGhWgl5rrlHu0UyAOWx1ManQ4FsPY1iPFKtWJFXqPdk1Wn5lsPG63j_Zhfnw4Xkw8us6Cv4qZFHhWxWHOrGpibiLpJbGJXGWaRGoSCjlZCoyDGPQT6UsVjyLwwQn8IyK4zIVUgGYM2jlm9yeg-c0DxSe0nI6IsUipzAkcJbZWCXyAjpkmOV7JZWxrG1y-fftKziioamQV9fQKj529gZ9fKFvy8H9Ar5dp2s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_3cGjw27tuu1MJFOBEATDjbRda4hhGBkX_3r7toHGeHC7dEuWNa9b33vt930P4CZi0n4oAjFVKnQZN8QVnBFXGS9UzA89KZEo3B_wZMIep8G0BrdbLozWugCf6TY2i738dKnWuFR2Z_Pj2OZzO7Br_X7glWyt7YoKtbkMj6OKH-eR-K7zMhyhnAlCuHwU5uS44_mjikrhRLoN6G9eX2JH3trrXLbV5y9lxv_27wBa33Q9Z7h1RIdQ09kRNKr40qn-3lUTklEBe63YRpmDc4HNYsuLQYkHXzk2inVQs2qOYqXOs15Y28-VbbwuNk-2YNK9H3cSt6qk4M59QnNXi8CXoY4VZYZGMlImDNJUck9QLoSJYp7aQMZ6qpgEgqWBH9opPMXyuET4WALmGOrZMtMn4BjJPGHPSDM8qCDUCBsUGE10IMLoFJpomNl7KZYxq2xy9vfta9hLxv3erPcweDqHfRymEod1AfX8Y60vrcfP5VUx0F-p7aq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Representation+Compensation+Networks+for+Continual+Semantic+Segmentation&rft.au=Zhang%2C+Chang-Bin&rft.au=Xiao%2C+Jia-Wen&rft.au=Liu%2C+Xialei&rft.au=Chen%2C+Ying-Cong&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7043&rft.epage=7054&rft_id=info:doi/10.1109%2FCVPR52688.2022.00692&rft.externalDocID=9879046 |