Representation Compensation Networks for Continual Semantic Segmentation

In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to deco...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7043 - 7054
Main Authors Zhang, Chang-Bin, Xiao, Jia-Wen, Liu, Xialei, Chen, Ying-Cong, Cheng, Ming-Ming
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to decouple the representation learning of both old and new knowledge. The RC module consists of two dynamically evolved branches with one frozen and one trainable. Besides, we design a pooled cube knowledge distillation strategy on both spatial and channel dimensions to further enhance the plasticity and stability of the model. We conduct experiments on two challenging continual semantic segmentation scenarios, continual class segmentation and continual domain segmentation. Without any extra computational overhead and parameters during inference, our method outperforms state-of-the-art performance. The code is available at https://github.com/zhangchbin/RCIL.
AbstractList In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to decouple the representation learning of both old and new knowledge. The RC module consists of two dynamically evolved branches with one frozen and one trainable. Besides, we design a pooled cube knowledge distillation strategy on both spatial and channel dimensions to further enhance the plasticity and stability of the model. We conduct experiments on two challenging continual semantic segmentation scenarios, continual class segmentation and continual domain segmentation. Without any extra computational overhead and parameters during inference, our method outperforms state-of-the-art performance. The code is available at https://github.com/zhangchbin/RCIL.
Author Zhang, Chang-Bin
Liu, Xialei
Xiao, Jia-Wen
Cheng, Ming-Ming
Chen, Ying-Cong
Author_xml – sequence: 1
  givenname: Chang-Bin
  surname: Zhang
  fullname: Zhang, Chang-Bin
  organization: TMCC, CS, Nankai University
– sequence: 2
  givenname: Jia-Wen
  surname: Xiao
  fullname: Xiao, Jia-Wen
  organization: TMCC, CS, Nankai University
– sequence: 3
  givenname: Xialei
  surname: Liu
  fullname: Liu, Xialei
  email: xialei@nankai.edu.cn
  organization: TMCC, CS, Nankai University
– sequence: 4
  givenname: Ying-Cong
  surname: Chen
  fullname: Chen, Ying-Cong
  organization: The Hong Kong University of Science and Technology (Guangzhou)
– sequence: 5
  givenname: Ming-Ming
  surname: Cheng
  fullname: Cheng, Ming-Ming
  organization: TMCC, CS, Nankai University
BookMark eNo1j91Kw0AUhFdRsK19Ar3ICySes5s9u3spQa1QVOrPbdkkJxJtNiUbEd_eQPVqvmGYgZmLk9AHFuISIUMEd1W8PW20JGszCVJmAOTkkZgjkc7J5aSOxQyBVEoO3ZlYxvgBAEoikrMzsdrwfuDIYfRj24ek6Ls9h3gwDzx-98NnTJp-mJIwtuHL75Jn7vzE1QTv3X_zXJw2fhd5-acL8Xp781Ks0vXj3X1xvU5bCWpM2WtZGnaVyhtlS1s1Rtd1SegVed9YRzUaKW3uQPu81tJwiTUoo8FLrVEtxMVht2Xm7X5oOz_8bJ01DqazvwtJT7I
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00692
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 7054
ExternalDocumentID 9879046
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-ea52b7e9c34f38b8cf75ddb61a36aaf896d172284905a4d527eb1d03750a25513
IEDL.DBID RIE
IngestDate Wed Aug 27 02:15:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ea52b7e9c34f38b8cf75ddb61a36aaf896d172284905a4d527eb1d03750a25513
PageCount 12
ParticipantIDs ieee_primary_9879046
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5497816
Snippet In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without...
SourceID ieee
SourceType Publisher
StartPage 7043
SubjectTerms Codes
Computational modeling
Computer vision
Deep learning
grouping and shape analysis
Neural networks
Representation learning
Semantics
Transfer/low-shot/long-tail learning; Segmentation
Title Representation Compensation Networks for Continual Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9879046
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7O3h00G1d152JhJhACIrhRtquNcQwjIyLf73vbQON8eB26ZYsa163vvfa7_sewJ3kGj8URZgqk_hcOOYrwZlvXJAYHiaB1kQUHk_EaM4fF_GiAfcHLoy1tgSf2R41y738bGN2tFTWx_w4xXyuCU1M3Cqu1mE9JcJMRqSyZscFLO0PXqYzEjMhAFdIspyC9jt_1FApXciwDeP9yyvkyFtvV-ie-fyly_jf3h1D95us500PbugEGjY_hXYdXXr1v7vtwGhWgl5rrlHu0UyAOWx1ManQ4FsPY1iPFKtWJFXqPdk1Wn5lsPG63j_Zhfnw4Xkw8us6Cv4qZFHhWxWHOrGpibiLpJbGJXGWaRGoSCjlZCoyDGPQT6UsVjyLwwQn8IyK4zIVUgGYM2jlm9yeg-c0DxSe0nI6IsUipzAkcJbZWCXyAjpkmOV7JZWxrG1y-fftKziioamQV9fQKj529gZ9fKFvy8H9Ar5dp2s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_3cGjw27tuu1MJFOBEATDjbRda4hhGBkX_3r7toHGeHC7dEuWNa9b33vt930P4CZi0n4oAjFVKnQZN8QVnBFXGS9UzA89KZEo3B_wZMIep8G0BrdbLozWugCf6TY2i738dKnWuFR2Z_Pj2OZzO7Br_X7glWyt7YoKtbkMj6OKH-eR-K7zMhyhnAlCuHwU5uS44_mjikrhRLoN6G9eX2JH3trrXLbV5y9lxv_27wBa33Q9Z7h1RIdQ09kRNKr40qn-3lUTklEBe63YRpmDc4HNYsuLQYkHXzk2inVQs2qOYqXOs15Y28-VbbwuNk-2YNK9H3cSt6qk4M59QnNXi8CXoY4VZYZGMlImDNJUck9QLoSJYp7aQMZ6qpgEgqWBH9opPMXyuET4WALmGOrZMtMn4BjJPGHPSDM8qCDUCBsUGE10IMLoFJpomNl7KZYxq2xy9vfta9hLxv3erPcweDqHfRymEod1AfX8Y60vrcfP5VUx0F-p7aq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Representation+Compensation+Networks+for+Continual+Semantic+Segmentation&rft.au=Zhang%2C+Chang-Bin&rft.au=Xiao%2C+Jia-Wen&rft.au=Liu%2C+Xialei&rft.au=Chen%2C+Ying-Cong&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7043&rft.epage=7054&rft_id=info:doi/10.1109%2FCVPR52688.2022.00692&rft.externalDocID=9879046