Real-time Driver Drowsiness Detection based on Eye Movement and Yawning using Facial Landmark
The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has...
Saved in:
Published in | 2021 International Conference on Computer Communication and Informatics (ICCCI) pp. 1 - 4 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
27.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has developed a real-time driver drowsiness detection based on eye movement and yawning using facial landmarks and dlib. This system helps to avoid accidents caused by drowsiness by detecting eye movements and yawning of the driver. The advantages of this system are low cost and minimized the requires the resource. The behavioral analysis method monitor results from the driver's facial landmark while driving without the need to place sensors in the driver's body. |
---|---|
AbstractList | The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has developed a real-time driver drowsiness detection based on eye movement and yawning using facial landmarks and dlib. This system helps to avoid accidents caused by drowsiness by detecting eye movements and yawning of the driver. The advantages of this system are low cost and minimized the requires the resource. The behavioral analysis method monitor results from the driver's facial landmark while driving without the need to place sensors in the driver's body. |
Author | Ahmed, Zeyad A.T. Mahale, Vivek Shareef, Ahmed Abdullah A. Gaikwad, Ashok T. Al-madani, Ali Mansour |
Author_xml | – sequence: 1 givenname: Ali Mansour surname: Al-madani fullname: Al-madani, Ali Mansour email: ali.m.almadani1992@gmail.com organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India – sequence: 2 givenname: Ashok T. surname: Gaikwad fullname: Gaikwad, Ashok T. email: drashokgaikwad@gmail.com organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India – sequence: 3 givenname: Vivek surname: Mahale fullname: Mahale, Vivek email: mahalevh@gmail.com organization: Institute of Management Studies and Information Technology,Aurangabad,India – sequence: 4 givenname: Zeyad A.T. surname: Ahmed fullname: Ahmed, Zeyad A.T. email: zeyad.ahmed2019@yahoo.com organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India – sequence: 5 givenname: Ahmed Abdullah A. surname: Shareef fullname: Shareef, Ahmed Abdullah A. email: shareef.kin@gmail.com organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India |
BookMark | eNotj89Kw0AYxFfQg60-gQf3BRL3b3b3KGmrgYogevAg5dvkiywmG8nGlr69EXuZ38DADLMg53GISMgtZznnzN1VZVlWmllR5IIJnjulDWP6jCy4EZZra7S8JB8vCF02hR7pagx7HGcMhxQipkRXOGE9hSFSDwkbOpv1EenTsMce40QhNvQdDjHET_qT_nQDdYCObuekh_Hrily00CW8PnFJ3jbr1_Ix2z4_VOX9NguCySlDJqRwpnBCNrblUJu6ELrxRilrvUPnUWkH3nPfskah1QhSyBoUGqFaLZfk5r83IOLuewzz-HF3eix_AUZeUX4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCCI50826.2021.9457005 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728158753 9781728158754 |
EndPage | 4 |
ExternalDocumentID | 9457005 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-e0232976923d8f1ac7c625db74488b9e9be459abb1bf0d4e85ea323ca4e724f53 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:36 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-e0232976923d8f1ac7c625db74488b9e9be459abb1bf0d4e85ea323ca4e724f53 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9457005 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-27 |
PublicationDateYYYYMMDD | 2021-01-27 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Conference on Computer Communication and Informatics (ICCCI) |
PublicationTitleAbbrev | ICCCI |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8078374 |
Snippet | The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | dlib drowsiness detection eye detection face detection facial landmark Informatics Mouth Python Real-time systems Road accidents Sensor systems Sensors Sleep yawning |
Title | Real-time Driver Drowsiness Detection based on Eye Movement and Yawning using Facial Landmark |
URI | https://ieeexplore.ieee.org/document/9457005 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XZKmbXLuNjZxIuJgHmQk6avIsB2jY-hfb9LWieLBUx5JICEhfO-9fO89hK5iDVGk7UOCQEce50Z4iqbaEyDBWIjToqpDNr2LxjN-Mw_nLXS9i4UBgIp8Br4Tq7_8tDAb5yrrS-6ysYdt1I6lrGO1GsoWJbI_SZJkYvUN5pgHjPrN7B9lUyrUGO2j6dd6NVlk6W9K7ZuPX6kY_7uhA9T7js_D9zvkOUQtyLvo-cHqfJ6rFY8Ha8e2sE2xrWnteABlxbnKsYOtFFth-A54WlTpwkus8hQ_qa1zkmBHhX_BI-Wc6fjWjryp9bKHZqPhYzL2muIJ3isjQemBBWNmdQ2rwKUio8rExpo6qY6tPSa0BKmBh1JpTXVGUg4iBBWwwCgOMeNZGByhTl7kcIxwpALCjCEZMYQrSlSgKYuEUmEkY6rECeq6o1ms6vwYi-ZUTv_uPkN77nqcG4PF56hTrjdwYYG91JfVjX4CzTulBQ |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pS2cTf5uDRdmmapum529h0HSIbzIOMJH0TGbYyOob-9SZtnSgePOWRF0hICN_Ly_feQ-g6VMC5MhcJfMUdxrRwpJcqR0AE2kCcEmUdsmTE-xN2Ow2mW-hmEwsDACX5DFwrln_5aa5X1lXWjpjNxh5sox1jVwteRWvVpC2PRO1BHMcDo6GWe0A9tx7_o3BKiRu9fZR8zVjRRRbuqlCu_viVjPG_SzpAre8IPXy_wZ5DtAVZEz09GKvPsdXicWdp-RamydcVsR13oChZVxm2wJViI3TfASd5mTC8wDJL8aNcWzcJtmT4Z9yT1p2Oh0bzKpeLFpr0uuO479TlE5wXSvzCAQPH1FgbxoRLxdyTOtTmsZOq0LzIhIogUsCCSCrlqTlJGYgApE99LRmElM0D_wg1sjyDY4S59AnVmsyJJkx6RPrKo1xIGfAo9KQ4QU27NbO3KkPGrN6V07-7r9Buf5wMZ8PB6O4M7dmjsk4NGp6jRrFcwYWB-UJdlqf7CZx5qFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Computer+Communication+and+Informatics+%28ICCCI%29&rft.atitle=Real-time+Driver+Drowsiness+Detection+based+on+Eye+Movement+and+Yawning+using+Facial+Landmark&rft.au=Al-madani%2C+Ali+Mansour&rft.au=Gaikwad%2C+Ashok+T.&rft.au=Mahale%2C+Vivek&rft.au=Ahmed%2C+Zeyad+A.T.&rft.date=2021-01-27&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICCCI50826.2021.9457005&rft.externalDocID=9457005 |