Real-time Driver Drowsiness Detection based on Eye Movement and Yawning using Facial Landmark

The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Computer Communication and Informatics (ICCCI) pp. 1 - 4
Main Authors Al-madani, Ali Mansour, Gaikwad, Ashok T., Mahale, Vivek, Ahmed, Zeyad A.T., Shareef, Ahmed Abdullah A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has developed a real-time driver drowsiness detection based on eye movement and yawning using facial landmarks and dlib. This system helps to avoid accidents caused by drowsiness by detecting eye movements and yawning of the driver. The advantages of this system are low cost and minimized the requires the resource. The behavioral analysis method monitor results from the driver's facial landmark while driving without the need to place sensors in the driver's body.
AbstractList The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the number of accidents by detecting the driver's drowsiness and gives an alert to beware of sleep that leads to an accident. This study has developed a real-time driver drowsiness detection based on eye movement and yawning using facial landmarks and dlib. This system helps to avoid accidents caused by drowsiness by detecting eye movements and yawning of the driver. The advantages of this system are low cost and minimized the requires the resource. The behavioral analysis method monitor results from the driver's facial landmark while driving without the need to place sensors in the driver's body.
Author Ahmed, Zeyad A.T.
Mahale, Vivek
Shareef, Ahmed Abdullah A.
Gaikwad, Ashok T.
Al-madani, Ali Mansour
Author_xml – sequence: 1
  givenname: Ali Mansour
  surname: Al-madani
  fullname: Al-madani, Ali Mansour
  email: ali.m.almadani1992@gmail.com
  organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India
– sequence: 2
  givenname: Ashok T.
  surname: Gaikwad
  fullname: Gaikwad, Ashok T.
  email: drashokgaikwad@gmail.com
  organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India
– sequence: 3
  givenname: Vivek
  surname: Mahale
  fullname: Mahale, Vivek
  email: mahalevh@gmail.com
  organization: Institute of Management Studies and Information Technology,Aurangabad,India
– sequence: 4
  givenname: Zeyad A.T.
  surname: Ahmed
  fullname: Ahmed, Zeyad A.T.
  email: zeyad.ahmed2019@yahoo.com
  organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India
– sequence: 5
  givenname: Ahmed Abdullah A.
  surname: Shareef
  fullname: Shareef, Ahmed Abdullah A.
  email: shareef.kin@gmail.com
  organization: Dr. Babasaheb Ambedkar Marathwada University,Department of Computer Science,Aurangabad,India
BookMark eNotj89Kw0AYxFfQg60-gQf3BRL3b3b3KGmrgYogevAg5dvkiywmG8nGlr69EXuZ38DADLMg53GISMgtZznnzN1VZVlWmllR5IIJnjulDWP6jCy4EZZra7S8JB8vCF02hR7pagx7HGcMhxQipkRXOGE9hSFSDwkbOpv1EenTsMce40QhNvQdDjHET_qT_nQDdYCObuekh_Hrily00CW8PnFJ3jbr1_Ix2z4_VOX9NguCySlDJqRwpnBCNrblUJu6ELrxRilrvUPnUWkH3nPfskah1QhSyBoUGqFaLZfk5r83IOLuewzz-HF3eix_AUZeUX4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCI50826.2021.9457005
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728158753
9781728158754
EndPage 4
ExternalDocumentID 9457005
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-e0232976923d8f1ac7c625db74488b9e9be459abb1bf0d4e85ea323ca4e724f53
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-e0232976923d8f1ac7c625db74488b9e9be459abb1bf0d4e85ea323ca4e724f53
PageCount 4
ParticipantIDs ieee_primary_9457005
PublicationCentury 2000
PublicationDate 2021-Jan.-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2021 International Conference on Computer Communication and Informatics (ICCCI)
PublicationTitleAbbrev ICCCI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8078374
Snippet The drowsiness of the drivers might increase road accidents. Nowadays, computer vision and image processing technology can solve the problem and decrease the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms dlib
drowsiness detection
eye detection
face detection
facial landmark
Informatics
Mouth
Python
Real-time systems
Road accidents
Sensor systems
Sensors
Sleep
yawning
Title Real-time Driver Drowsiness Detection based on Eye Movement and Yawning using Facial Landmark
URI https://ieeexplore.ieee.org/document/9457005
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XZKmbXLuNjZxIuJgHmQk6avIsB2jY-hfb9LWieLBUx5JICEhfO-9fO89hK5iDVGk7UOCQEce50Z4iqbaEyDBWIjToqpDNr2LxjN-Mw_nLXS9i4UBgIp8Br4Tq7_8tDAb5yrrS-6ysYdt1I6lrGO1GsoWJbI_SZJkYvUN5pgHjPrN7B9lUyrUGO2j6dd6NVlk6W9K7ZuPX6kY_7uhA9T7js_D9zvkOUQtyLvo-cHqfJ6rFY8Ha8e2sE2xrWnteABlxbnKsYOtFFth-A54WlTpwkus8hQ_qa1zkmBHhX_BI-Wc6fjWjryp9bKHZqPhYzL2muIJ3isjQemBBWNmdQ2rwKUio8rExpo6qY6tPSa0BKmBh1JpTXVGUg4iBBWwwCgOMeNZGByhTl7kcIxwpALCjCEZMYQrSlSgKYuEUmEkY6rECeq6o1ms6vwYi-ZUTv_uPkN77nqcG4PF56hTrjdwYYG91JfVjX4CzTulBQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pS2cTf5uDRdmmapum529h0HSIbzIOMJH0TGbYyOob-9SZtnSgePOWRF0hICN_Ly_feQ-g6VMC5MhcJfMUdxrRwpJcqR0AE2kCcEmUdsmTE-xN2Ow2mW-hmEwsDACX5DFwrln_5aa5X1lXWjpjNxh5sox1jVwteRWvVpC2PRO1BHMcDo6GWe0A9tx7_o3BKiRu9fZR8zVjRRRbuqlCu_viVjPG_SzpAre8IPXy_wZ5DtAVZEz09GKvPsdXicWdp-RamydcVsR13oChZVxm2wJViI3TfASd5mTC8wDJL8aNcWzcJtmT4Z9yT1p2Oh0bzKpeLFpr0uuO479TlE5wXSvzCAQPH1FgbxoRLxdyTOtTmsZOq0LzIhIogUsCCSCrlqTlJGYgApE99LRmElM0D_wg1sjyDY4S59AnVmsyJJkx6RPrKo1xIGfAo9KQ4QU27NbO3KkPGrN6V07-7r9Buf5wMZ8PB6O4M7dmjsk4NGp6jRrFcwYWB-UJdlqf7CZx5qFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Computer+Communication+and+Informatics+%28ICCCI%29&rft.atitle=Real-time+Driver+Drowsiness+Detection+based+on+Eye+Movement+and+Yawning+using+Facial+Landmark&rft.au=Al-madani%2C+Ali+Mansour&rft.au=Gaikwad%2C+Ashok+T.&rft.au=Mahale%2C+Vivek&rft.au=Ahmed%2C+Zeyad+A.T.&rft.date=2021-01-27&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICCCI50826.2021.9457005&rft.externalDocID=9457005