A negative selection algorithm based on adaptive immunoregulation
Negative selection algorithm (NSA) is an important detectors training algorithm in artificial immune system (AIS). In NSAs, the self radius and location of detectors affect the performance of algorithms. However, the traditional NSAs preset the self radius empirically and generate detectors randomly...
Saved in:
Published in | 2020 5th International Conference on Computational Intelligence and Applications (ICCIA) pp. 177 - 182 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCIA49625.2020.00041 |
Cover
Abstract | Negative selection algorithm (NSA) is an important detectors training algorithm in artificial immune system (AIS). In NSAs, the self radius and location of detectors affect the performance of algorithms. However, the traditional NSAs preset the self radius empirically and generate detectors randomly without considering the distribution of antigens resulting in the performance of AIS varies greatly in different applications. To deal with these limitations, an adaptive immunoregulation based real value negative selection algorithm (AINSA) is proposed in this paper. AINSA utilizes the "adaptive immunoregulation" mechanism to calculate the self radius and optimize the location of the candidate detectors. In this way, AINSA can attain the suitable self radius for different application and effectively generate the detectors in the region where antigens distribute densely. The experimental results show, on the artificial dataset and the UCI standard datasets, AINSA can reach the higher detection rate with better detectors generation efficiency compared to the classical RNSA and V-detector algorithm. |
---|---|
AbstractList | Negative selection algorithm (NSA) is an important detectors training algorithm in artificial immune system (AIS). In NSAs, the self radius and location of detectors affect the performance of algorithms. However, the traditional NSAs preset the self radius empirically and generate detectors randomly without considering the distribution of antigens resulting in the performance of AIS varies greatly in different applications. To deal with these limitations, an adaptive immunoregulation based real value negative selection algorithm (AINSA) is proposed in this paper. AINSA utilizes the "adaptive immunoregulation" mechanism to calculate the self radius and optimize the location of the candidate detectors. In this way, AINSA can attain the suitable self radius for different application and effectively generate the detectors in the region where antigens distribute densely. The experimental results show, on the artificial dataset and the UCI standard datasets, AINSA can reach the higher detection rate with better detectors generation efficiency compared to the classical RNSA and V-detector algorithm. |
Author | Yang, Tao Deng, Hongli |
Author_xml | – sequence: 1 givenname: Hongli surname: Deng fullname: Deng, Hongli organization: China West Normal University,Education and Information Technology Center,Nanchong,China – sequence: 2 givenname: Tao surname: Yang fullname: Yang, Tao organization: China West Normal University,Education and Information Technology Center,Nanchong,China |
BookMark | eNotjMtKxEAQAEfQg677BSLkB7J2z0wynWMIPgILe9Hz0sn0xIE8liQr-Pey6qmgKOpOXY_TKEo9IuwQoXiqq6oubZHrbKdBww4ALF6pbeEInSbMweriVpVlMkrHa_ySZJFe2jVOY8J9N81x_RyShhfxyUV5Pv1WcRjO4zRLd-75Et-rm8D9Itt_btTHy_N79ZbuD691Ve7TqMGsqQ-BGC2SDmCBAK3JuMm9CdAiBGcb6zPtKARP4oKACZSFVhOTcI5gNurh7xtF5Hia48Dz97FAR7kj8wNVaEiC |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIA49625.2020.00041 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728160429 1728160421 |
EndPage | 182 |
ExternalDocumentID | 9178678 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-dff8a14182f040801435ab6d3f0c10f74b4d5278ffd8e7fe03f85fc28a8ea6103 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:33:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-dff8a14182f040801435ab6d3f0c10f74b4d5278ffd8e7fe03f85fc28a8ea6103 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9178678 |
PublicationCentury | 2000 |
PublicationDate | 2020-June |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationTitle | 2020 5th International Conference on Computational Intelligence and Applications (ICCIA) |
PublicationTitleAbbrev | CIAPP |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7465901 |
Snippet | Negative selection algorithm (NSA) is an important detectors training algorithm in artificial immune system (AIS). In NSAs, the self radius and location of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 177 |
SubjectTerms | Artificial immune component evolution immunoregulation negative selection algorithm |
Title | A negative selection algorithm based on adaptive immunoregulation |
URI | https://ieeexplore.ieee.org/document/9178678 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjw6aNdutEdCJGCC8SAJN9KfSNRBcFz8633tJkbjwdvSbXl969bX173v-xC6YYwyznKf0My5hCupEkWFTayyMjVESBO1AacP-XjG7-fZvIFu91gY51wsPnPdcBj_5du12YWtsh6kFgIm1yZqwmtWYbVqUA4lsjcZDicDLmFBD2lfSiIPJ_0hmhJjxugQTb-sVaUiL91dqbvm4xcR43-7c4Q63-g8_LiPO8eo4Yo2Ggxw4ZaRxRu_R20beOBYvS7XkP0_v-EQrSwOTVZt4lWrgAwBk8tawKuDZqO7p-E4qeURklVKWJlY74WiHBIED19iYIFhmdK5ZZ4YSnyfa26ztC-8t8L1vSPMi8ybVCjhFKya2AlqFevCnSIsFZFOwbnU53Ab07mmWmluOBhgVp2hdnB_sakYMBa15-d_N1-ggzAAVUHVJWqV2527gtBd6us4Zp-9VZxA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_u4NHB-3aje5IiAQUiAdIuJF2bZGoQHRc_Ot97SZG48Hb0nV5a5vt69ve930AN4xRxlliQxobE3KZylBSoUMtdRplRKSZ9wYcjpLehN9P42kFbrdcGGOMLz4zDXfo_-XrVbZxn8qamFoIfLnuwC7iPo8LtlZJy6EkbfY7nX6bp7ilx8QvIl6Jk_6wTfGo0T2A4Ve8oljkubHJVSP7-CXF-N8bOoT6Nz8veNwizxFUzLIG7XawNHOv4x28e3cbnPJAvsxXmP8_vQYOr3TgmrRc-14Lxw3BkPPSwqsOk-7duNMLS4OEcBERlofaWiEpxxTB4rPodGBYLFWimSUZJbbFFddx1BLWamFa1hBmRWyzSEhhJO6b2DFUl6ulOYEglSQ1Es9FNsHLmEoUVVLxjGMApuUp1NzwZ-tCA2NWjvzs7-Zr2OuNh4PZoD96OId9txhFedUFVPO3jblEIM_VlV-_TxtNn40 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+5th+International+Conference+on+Computational+Intelligence+and+Applications+%28ICCIA%29&rft.atitle=A+negative+selection+algorithm+based+on+adaptive+immunoregulation&rft.au=Deng%2C+Hongli&rft.au=Yang%2C+Tao&rft.date=2020-06-01&rft.pub=IEEE&rft.spage=177&rft.epage=182&rft_id=info:doi/10.1109%2FICCIA49625.2020.00041&rft.externalDocID=9178678 |