Vec2Face: Unveil Human Faces From Their Blackbox Features in Face Recognition

Unveiling face images of a subject given his/her high-level representations extracted from a blackbox Face Recognition engine is extremely challenging. It is because the limitations of accessible information from that engine including its structure and uninterpretable extracted features. This paper...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 6131 - 6140
Main Authors Duong, Chi Nhan, Truong, Thanh-Dat, Luu, Khoa, Quach, Kha Gia, Bui, Hung, Roy, Kaushik
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR42600.2020.00617

Cover

Loading…
Abstract Unveiling face images of a subject given his/her high-level representations extracted from a blackbox Face Recognition engine is extremely challenging. It is because the limitations of accessible information from that engine including its structure and uninterpretable extracted features. This paper presents a novel generative structure with Bijective Metric Learning, namely Bijective Generative Adversarial Networks in a Distillation framework (DiBiGAN), for synthesizing faces of an identity given that person's features. In order to effectively address this problem, this work firstly introduces a bijective metric so that the distance measurement and metric learning process can be directly adopted in image domain for an image reconstruction task. Secondly, a distillation process is introduced to maximize the information exploited from the blackbox face recognition engine. Then a Feature-Conditional Generator Structure with Exponential Weighting Strategy is presented for a more robust generator that can synthesize realistic faces with ID preservation. Results on several benchmarking datasets including CelebA, LFW, AgeDB, CFP-FP against matching engines have demonstrated the effectiveness of DiBiGAN on both image realism and ID preservation properties.
AbstractList Unveiling face images of a subject given his/her high-level representations extracted from a blackbox Face Recognition engine is extremely challenging. It is because the limitations of accessible information from that engine including its structure and uninterpretable extracted features. This paper presents a novel generative structure with Bijective Metric Learning, namely Bijective Generative Adversarial Networks in a Distillation framework (DiBiGAN), for synthesizing faces of an identity given that person's features. In order to effectively address this problem, this work firstly introduces a bijective metric so that the distance measurement and metric learning process can be directly adopted in image domain for an image reconstruction task. Secondly, a distillation process is introduced to maximize the information exploited from the blackbox face recognition engine. Then a Feature-Conditional Generator Structure with Exponential Weighting Strategy is presented for a more robust generator that can synthesize realistic faces with ID preservation. Results on several benchmarking datasets including CelebA, LFW, AgeDB, CFP-FP against matching engines have demonstrated the effectiveness of DiBiGAN on both image realism and ID preservation properties.
Author Luu, Khoa
Duong, Chi Nhan
Roy, Kaushik
Truong, Thanh-Dat
Quach, Kha Gia
Bui, Hung
Author_xml – sequence: 1
  givenname: Chi Nhan
  surname: Duong
  fullname: Duong, Chi Nhan
  organization: Concordia University, Canada
– sequence: 2
  givenname: Thanh-Dat
  surname: Truong
  fullname: Truong, Thanh-Dat
  organization: University of Arkansas, USA
– sequence: 3
  givenname: Khoa
  surname: Luu
  fullname: Luu, Khoa
  organization: University of Arkansas, USA
– sequence: 4
  givenname: Kha Gia
  surname: Quach
  fullname: Quach, Kha Gia
  organization: Concordia University, Canada
– sequence: 5
  givenname: Hung
  surname: Bui
  fullname: Bui, Hung
  organization: VinAI Research
– sequence: 6
  givenname: Kaushik
  surname: Roy
  fullname: Roy, Kaushik
  organization: North Carolina A&T State University, USA
BookMark eNotjMFOwzAQRA0CiVL6BXDwD6Ts2vXG5gYRoUhFoKrttXLjDRjaBCUpgr8nqBxGT5o3mnNxUtUVC3GFMEYEd52tXuYTRQBjBQrGAITpkRi51GKq-iBZcywGCKQTcujOxKht3wFAK0RydiCeVlyo3Bd8I5fVF8etnO53vpJ_VSvzpt7JxRvHRt5tffGxqb9lzr7bN72Mh5Wcc1G_VrGLdXUhTku_bXn0z6FY5veLbJrMnh8es9tZEhXoLgkBgjZG68BBWU_oOKSBCmWpVGpC5JxixkKDc6G0gcjAxvTKeUNUaj0Ul4ffyMzrzybufPOzdmhSMKR_AZuHT3o
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.00617
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 6140
ExternalDocumentID 9157056
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-dd0d35533ded28a619ed7d6c286f22466992ee1c3099df8d6650b5f229a566f33
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-dd0d35533ded28a619ed7d6c286f22466992ee1c3099df8d6650b5f229a566f33
PageCount 10
ParticipantIDs ieee_primary_9157056
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.366201
Snippet Unveiling face images of a subject given his/her high-level representations extracted from a blackbox Face Recognition engine is extremely challenging. It is...
SourceID ieee
SourceType Publisher
StartPage 6131
SubjectTerms Engines
Face recognition
Feature extraction
Generators
Image reconstruction
Measurement
Task analysis
Title Vec2Face: Unveil Human Faces From Their Blackbox Features in Face Recognition
URI https://ieeexplore.ieee.org/document/9157056
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J09VW_GbHDy6bTbpfsRrsRShUkpbeiubZBaKuivtroi_3kl2W1E8eFuygYSEZN6bzJsh5NYPU1vDIvJ8oWKvr-PUQ1QdeYZphfADQEorTh4_haN5_3EZLBvkbq-FAQAXfAZd--ne8k2uS-sq60k_iNBgH5ADJG6VVmvvTxHIZEIZ1-o4n8neYDGZuvzryAK5C-Dyf9ZQcSZk2CLj3eBV5MhztyxUV3_-ysv439kdkc63WI9O9mbomDQgOyGtGl3S-uxu22S8AI03soZ7Os_eYf1CnQOf2qYtHW7yVzqzrwbU-fRU_kEtPCyRjtN11YtOd9FGedYh8-HDbDDy6mIK3pozUXjGMIPYQggDhscJ8iYwkQk1j8PUJpULpeQAvhYIGU0amxChmwrwl0wQ8aVCnJJmlmdwRmjCTcICUJb69CWeYd-wyDC8qrjiLFXnpG1XZ_VW5ctY1Qtz8XfzJTm0-1OFX12RZrEp4RoNfaFu3A5_AVM3pgk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoYGvZj3olElRGCAHCjdD1LSHqZmAzxr_e125gNB68LV2TNm3a932v33uPkBvHi3UNC99yuAysdhTEFqJq31J2JBF-AAihg5PDgdebtB9n7qxCbrexMABgxGfQ1J_mLV-lUa5dZS3huD4a7B2yi3bfdYpora1HhSOX8URQxsc5tmh1psORycCOPJAZCZfzs4qKMSLdGgk3wxfakedmnslm9PkrM-N_53dAGt_henS4NUSHpALJEamV-JKWp3ddJ-EUIryTI7ijk-Qdli_UuPCpblrT7ip9pWP9bkCNV0-mH1QDxBwJOV0WvehoozdKkwaZdO_HnZ5VllOwlszmmaWUrRBdcK5AsWCBzAmUr7yIBV6s08p5QjAAJ-IIGlUcKA_Bm3Txl1gg5os5PybVJE3ghNAFUwvbBanJT1vgKXaU7SsbLysmmR3LU1LXqzN_KzJmzMuFOfu7-Zrs9cZhf95_GDydk329V4UY64JUs1UOl2j2M3lldvsLMASpUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Vec2Face%3A+Unveil+Human+Faces+From+Their+Blackbox+Features+in+Face+Recognition&rft.au=Duong%2C+Chi+Nhan&rft.au=Truong%2C+Thanh-Dat&rft.au=Luu%2C+Khoa&rft.au=Quach%2C+Kha+Gia&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=6131&rft.epage=6140&rft_id=info:doi/10.1109%2FCVPR42600.2020.00617&rft.externalDocID=9157056