On the Tunable Sparse Graph Solver for Pose Graph Optimization in Visual SLAM Problems

We report a tunable sparse optimization solver that can trade a slight decrease in accuracy for significant speed improvement in pose graph optimization in visual simultaneous localization and mapping (vSLAM). The solver is designed for devices with significant computation and power constraints such...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1300 - 1306
Main Authors Chou, Chieh, Wang, Di, Song, Dezhen, Davis, Timothy A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text
ISSN2153-0866
DOI10.1109/IROS40897.2019.8967731

Cover

Abstract We report a tunable sparse optimization solver that can trade a slight decrease in accuracy for significant speed improvement in pose graph optimization in visual simultaneous localization and mapping (vSLAM). The solver is designed for devices with significant computation and power constraints such as mobile phones or tablets. Two approaches have been combined in our design. The first is a graph pruning strategy by exploiting objective function structure to reduce the optimization problem size which further sparsifies the optimization problem. The second step is to accelerate each optimization iteration in solving increments for the gradient-based search in Gauss-Newton type optimization solver. We apply a modified Cholesky factorization and reuse the decomposition result from last iteration by using Cholesky update/downdate to accelerate the computation. We have implemented our solver and tested it with open source data. The experimental results show that our solver can be twice as fast as the counterpart while maintaining a loss of less than 5% in accuracy.
AbstractList We report a tunable sparse optimization solver that can trade a slight decrease in accuracy for significant speed improvement in pose graph optimization in visual simultaneous localization and mapping (vSLAM). The solver is designed for devices with significant computation and power constraints such as mobile phones or tablets. Two approaches have been combined in our design. The first is a graph pruning strategy by exploiting objective function structure to reduce the optimization problem size which further sparsifies the optimization problem. The second step is to accelerate each optimization iteration in solving increments for the gradient-based search in Gauss-Newton type optimization solver. We apply a modified Cholesky factorization and reuse the decomposition result from last iteration by using Cholesky update/downdate to accelerate the computation. We have implemented our solver and tested it with open source data. The experimental results show that our solver can be twice as fast as the counterpart while maintaining a loss of less than 5% in accuracy.
Author Wang, Di
Chou, Chieh
Davis, Timothy A.
Song, Dezhen
Author_xml – sequence: 1
  givenname: Chieh
  surname: Chou
  fullname: Chou, Chieh
  organization: Texas A&M University, College Station,CSE Department,TX,USA,77843
– sequence: 2
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: Texas A&M University, College Station,CSE Department,TX,USA,77843
– sequence: 3
  givenname: Dezhen
  surname: Song
  fullname: Song, Dezhen
  organization: Texas A&M University, College Station,CSE Department,TX,USA,77843
– sequence: 4
  givenname: Timothy A.
  surname: Davis
  fullname: Davis, Timothy A.
  organization: Texas A&M University, College Station,CSE Department,TX,USA,77843
BookMark eNo9kFFLwzAUhaMouM39AkHyBzrvTZoleRxD56DSYedeR0pvWKRrS9oJ-usdOHw68HH44Jwxu2nahhh7RJghgn1av-dFCsbqmQC0M2PnWku8YmPUwmAKkJprNhKoZAJmPr9j077_BAAEbc_lEdvlDR8OxLenxpU18aJzsSe-iq478KKtvyhy30a-af9p3g3hGH7cENqGh4bvQn9yNS-yxRvfxPZsOfb37Na7uqfpJSfs4-V5u3xNsny1Xi6yJAiQQ1LJymtDZEkpIUlh6RBROHmeITT4ElRpnLXCKE_eQVWiKEmmylXSey3lhD38eQMR7bsYji5-7y83yF82rFOl
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS40897.2019.8967731
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728140048
9781728140049
EISSN 2153-0866
EndPage 1306
ExternalDocumentID 8967731
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-d3df78ee9e5523e51ba1112a3677270fb05b8a99285fefa0db12be345ad3ff733
IEDL.DBID RIE
IngestDate Wed Aug 27 07:42:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d3df78ee9e5523e51ba1112a3677270fb05b8a99285fefa0db12be345ad3ff733
PageCount 7
ParticipantIDs ieee_primary_8967731
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.122068
Snippet We report a tunable sparse optimization solver that can trade a slight decrease in accuracy for significant speed improvement in pose graph optimization in...
SourceID ieee
SourceType Publisher
StartPage 1300
SubjectTerms Accuracy
Gradient methods
Intelligent robots
Linear programming
Mobile handsets
Optimization
Simultaneous localization and mapping
Visualization
Title On the Tunable Sparse Graph Solver for Pose Graph Optimization in Visual SLAM Problems
URI https://ieeexplore.ieee.org/document/8967731
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8IwFMAb5KQXP8D4nR48OujWdV2PxohoRIgDwo2022tC1I3IdvGvt90mqPHgrWmztGmb99G933sIXQplJF5APcdPFDi-cJUjAqkd4inhxzH3dGDZ4cFT0J_4DzM2a6CrNQsDAGXwGXRss_yXn2RxYZ_KuqEIOLfQ9Ja5ZhWrtXlPIVyY8RoCdono3j8PI5-EgtsALnMjqo9_VFEplUhvFw2-pq9iR146Ra468cevzIz_Xd8eam9wPTxaK6J91ID0AO18yzTYQtNhio2ph8dFyUrhaGkcWsB3Nl01jjIbHo2N-YpH2bp3aITJW01p4kWKp4tVIV9x9Hg9sLPZMjSrNpr0bsc3facuqeAsPEJzJ6GJ5iGAAGY8UGCukkbYeZKahXucaEWYCqUQXsg0aEkS5XoKqM9kQrXmlB6iZpqlcISwNIaCSjQT2mg4qrjxm3ytY2MxAJMQJ8eoZXdovqyyZszrzTn5u_sUbdtTqii_M9TM3ws4N-o-VxflOX8Cnr2qjA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHtSLH2D8tgePDrZ1XdejMSIoA-KAcCPt9poQdRBhF_96222CGg_emqZNX9rm_d5r3-89hK651BrPJ67lJRIsjzvS4r5Qlu1K7sUxc5VvuMNhz2-PvMcJnVTQzZoLAwB58Bk0TDP_y0_mcWaeypoB9xkzpOktjfseLdhamxcVm3E9oqQBOzZvdp77kWcHnJkQLn0niuk_6qjkMNLaQ-GXAEX0yEsjW8lG_PErN-N_JdxH9Q1hDw_WUHSAKpAeot1vuQZraNxPsTb28DDL2VI4WmiXFvCDSViNo7kJkMbagMWD-bq3r9XJW8nTxLMUj2fLTLziqHsbmtVMIZplHY1a98O7tlUWVbBmrk1WVkISxQIADlT7oEAdKbS6cwXRgrvMVtKmMhCcuwFVoISdSMeVQDwqEqIUI-QIVdN5CscIC20qyERRrjTGEcm05-QpFWubAaiAODlBNbND00WRN2Nabs7p391XaLs9DLvTbqf3dIZ2zIkVnL9zVF29Z3ChwX8lL_Mz_wS8Pa3Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=On+the+Tunable+Sparse+Graph+Solver+for+Pose+Graph+Optimization+in+Visual+SLAM+Problems&rft.au=Chou%2C+Chieh&rft.au=Wang%2C+Di&rft.au=Song%2C+Dezhen&rft.au=Davis%2C+Timothy+A.&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=1300&rft.epage=1306&rft_id=info:doi/10.1109%2FIROS40897.2019.8967731&rft.externalDocID=8967731