Distillation Language Adversarial Network for Cross-lingual Sentiment Analysis
Cross-lingual sentiment analysis aims at tackling the lack of annotated corpus of variant low-resource languages by training a common classifier, to transfer the knowledge learned from the source language to target languages. Existing large-scale pre-trained language models have got remarkable impro...
Saved in:
Published in | 2022 International Conference on Asian Language Processing (IALP) pp. 45 - 50 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
27.10.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IALP57159.2022.9961285 |
Cover
Abstract | Cross-lingual sentiment analysis aims at tackling the lack of annotated corpus of variant low-resource languages by training a common classifier, to transfer the knowledge learned from the source language to target languages. Existing large-scale pre-trained language models have got remarkable improvements in cross-lingual sentiment analysis. However, these models still suffer from lack of annotated corpus for low-resource languages. To address such problems, we propose an end-to-end sentiment analysis architecture for cross-lingual sentiment analysis, named Distillation Language Adversarial Network (DLAN). Based on pre-trained model, DLAN uses adversarial learning with knowledge distillation to learn language invariant features without extra training data. We evaluate the proposed method on Amazon review dataset, a multilingual sentiment dataset. The results illustrate that DLAN is more effective than the baseline methods in cross-lingual sentiment analysis. |
---|---|
AbstractList | Cross-lingual sentiment analysis aims at tackling the lack of annotated corpus of variant low-resource languages by training a common classifier, to transfer the knowledge learned from the source language to target languages. Existing large-scale pre-trained language models have got remarkable improvements in cross-lingual sentiment analysis. However, these models still suffer from lack of annotated corpus for low-resource languages. To address such problems, we propose an end-to-end sentiment analysis architecture for cross-lingual sentiment analysis, named Distillation Language Adversarial Network (DLAN). Based on pre-trained model, DLAN uses adversarial learning with knowledge distillation to learn language invariant features without extra training data. We evaluate the proposed method on Amazon review dataset, a multilingual sentiment dataset. The results illustrate that DLAN is more effective than the baseline methods in cross-lingual sentiment analysis. |
Author | Ouyang, Zhouhao Zhou, Yongmei Wang, Deheng Yang, Aimin Peng, Sancheng Xie, Fenfang |
Author_xml | – sequence: 1 givenname: Deheng surname: Wang fullname: Wang, Deheng email: 1148684516@qq.com organization: School of Cyber Security, Guang Dong University of Foreign Studies,Guangzhou,China – sequence: 2 givenname: Aimin surname: Yang fullname: Yang, Aimin email: amyang18@163.com organization: School of Cyber Security, Guang Dong University of Foreign Studies,Guangzhou,China – sequence: 3 givenname: Yongmei surname: Zhou fullname: Zhou, Yongmei email: yongmeizhou@gdufs.edu.cn organization: School of Cyber Security, Guang Dong University of Foreign Studies,Guangzhou,China – sequence: 4 givenname: Fenfang surname: Xie fullname: Xie, Fenfang email: xiefragrance@163.com organization: Guangdong University of Foreign Studies,Laboratory of Language Engineering and Computing,Guangzhou,China – sequence: 5 givenname: Zhouhao surname: Ouyang fullname: Ouyang, Zhouhao email: tal-darim@foxmail.com organization: School of Computing, University of Leeds,Leeds,West Yorkshire,United Kingdom,LS2 9JT – sequence: 6 givenname: Sancheng surname: Peng fullname: Peng, Sancheng email: psc346@aliyun.com organization: Guangdong University of Foreign Studies,Laboratory of Language Engineering and Computing,Guangzhou,China |
BookMark | eNotj11LwzAYRiPohc79AkHyB1qTtPm6LPVrUOZgej3etm9GMEslqcr-vYq7ec7N4cBzRc7jFJGQW85Kzpm9WzXdRmoubSmYEKW1igsjz8jSasOVkrVWuq4vyfre59mHALOfIu0g7j9hj7QZvzBlSB4CXeP8PaV36qZE2zTlXAT_pwW6xTj7w-_QJkI4Zp-vyYWDkHF54oK8PT68ts9F9_K0apuu8IJVczEyOzrL7VAJoWFUwlkUKCTrba1lP_TGGVCg0SotEVVvwNQaHTeDQ6NdtSA3_12PiLuP5A-QjrvTy-oHUtNOMw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IALP57159.2022.9961285 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665476744 1665476745 |
EndPage | 50 |
ExternalDocumentID | 9961285 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-d09df919c3227ad62f9e2e250b9475bcb8f8a6a7e9675ee6b8a847ef18cfe87f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:12 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-d09df919c3227ad62f9e2e250b9475bcb8f8a6a7e9675ee6b8a847ef18cfe87f3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9961285 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-27 |
PublicationDateYYYYMMDD | 2022-10-27 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | 2022 International Conference on Asian Language Processing (IALP) |
PublicationTitleAbbrev | IALP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8205819 |
Snippet | Cross-lingual sentiment analysis aims at tackling the lack of annotated corpus of variant low-resource languages by training a common classifier, to transfer... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 45 |
SubjectTerms | Adaptation models Adversarial network Analytical models Cross-lingual sentiment analysis Knowledge distillation Pre-trained model Predictive models Sentiment analysis Training Training data Visualization |
Title | Distillation Language Adversarial Network for Cross-lingual Sentiment Analysis |
URI | https://ieeexplore.ieee.org/document/9961285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhxmriJHY-oUBXUVpWgUrfKj7OEQC2CZOHXc07SIhADW5SHHPlx3539fXeEXGUQSwdcs8RmMQsGj-XCSqYGWhhpHH4WtMPTmRgv0odltmyR650WBgAq8hlE4bI6y3cbW4atsj765mhOszZp4zSrtVqN6DeJVf_-ZjLPJMIzRn2cR83LP6qmVKAx2ifTbXM1V-QlKgsT2c9fmRj_-z8HpPctz6PzHfAckhasu2R2G1bra01to5NmG5JWBZc_dJhmdFZTvin6qXQY0JEFLXqJTx4DZyg0RrdJSnpkMbp7Go5ZUyyBPfN4UDAXK-dVoiyuUKmd4F4BB3RwjEplZqzJfa6FlqAwRAAQJtcITOCT3HrIpR8ckc56s4ZjQiVGTc4adAaESrkHE9JwoeelZJJoRL0T0g19sXqr82Gsmm44_fv2GdkL4xHsPZfnpFO8l3CBQF6Yy2oEvwAeeKCh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCI08RN7HhEhaqFNKpEK3WrbOciIVCLIFn49ZyTUARiYIuSWI78ce-dc--OkKsIfJkB1yywkc-cwWOxsJKpvhZGmgybOe3wJBWjeXi_iBYtcr3RwgBAFXwGnrus_uVna1u6o7IecnM0p9EW2UbcD6NardXIfgNf9cY3yTSSCNDo93HuNa__qJtSwcZwj0y-OqyjRZ69sjCe_fiVi_G_X7RPut8CPTrdQM8BacGqQ9Jbt19f6uA2mjQHkbQqufyu3UKjaR30TZGp0oHDR-bU6CU-eXRRQ64z-pWmpEvmw7vZYMSacgnsifv9gmW-ynIVKIt7VOpM8FwBB6Q4RoUyMtbEeayFlqDQSQAQJtYITZAHsc0hlnn_kLRX6xUcESrRb8qsQTogVMhzMC4RF3IvJYNAI-4dk44bi-VrnRFj2QzDyd-3L8nOaDZJlsk4fTglu25unPXn8oy0i7cSzhHWC3NRzeYntuOj7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Asian+Language+Processing+%28IALP%29&rft.atitle=Distillation+Language+Adversarial+Network+for+Cross-lingual+Sentiment+Analysis&rft.au=Wang%2C+Deheng&rft.au=Yang%2C+Aimin&rft.au=Zhou%2C+Yongmei&rft.au=Xie%2C+Fenfang&rft.date=2022-10-27&rft.pub=IEEE&rft.spage=45&rft.epage=50&rft_id=info:doi/10.1109%2FIALP57159.2022.9961285&rft.externalDocID=9961285 |