Enhanced Classification of Individual Finger Movements with ECoG

Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning al...

Full description

Saved in:
Bibliographic Details
Published inConference record - Asilomar Conference on Signals, Systems, & Computers pp. 2063 - 2066
Main Authors Yao, Lin, Shoaran, Mahsa
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text
ISSN2576-2303
DOI10.1109/IEEECONF44664.2019.9048649

Cover

Loading…
Abstract Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.
AbstractList Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients.
Author Yao, Lin
Shoaran, Mahsa
Author_xml – sequence: 1
  givenname: Lin
  surname: Yao
  fullname: Yao, Lin
  organization: Cornell University,School of Electrical and Computer Engineering,Ithaca,NY,USA,14853
– sequence: 2
  givenname: Mahsa
  surname: Shoaran
  fullname: Shoaran, Mahsa
  organization: Cornell University,School of Electrical and Computer Engineering,Ithaca,NY,USA,14853
BookMark eNotz0FLwzAYgOEoCq7TX-AleG9NvmRpelNKOgvTXfQ80uSri3SpNHXiv1dwp_f2wpORizhGJOSOs4JzVt23xph6-9JIqZQsgPGqqJjUSlZnJOMlaC4FY_KcLGBVqhwEE1ckS-mDMWCgYUEeTNzb6NDTerAphT44O4cx0rGnbfThGPyXHWgT4jtO9Hk84gHjnOh3mPfU1OP6mlz2dkh4c-qSvDXmtX7KN9t1Wz9u8gBMzLlnulKwsp3XyHXZlQ6td04rZb3HPwsI7HSvpAWUTgkAKxGgL7Hs0CEXS3L7_w2IuPucwsFOP7uTVvwCU09NWg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IEEECONF44664.2019.9048649
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728143004
9781728143002
EISSN 2576-2303
EndPage 2066
ExternalDocumentID 9048649
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-d089625abd8e187b7ceadcc866adde10923eb8f64a2e4c6322a4e22f7e7bece13
IEDL.DBID RIE
IngestDate Wed Aug 27 07:43:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d089625abd8e187b7ceadcc866adde10923eb8f64a2e4c6322a4e22f7e7bece13
PageCount 4
ParticipantIDs ieee_primary_9048649
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle Conference record - Asilomar Conference on Signals, Systems, & Computers
PublicationTitleAbbrev IEEECONF
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020282
Score 2.1742523
Snippet Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we...
SourceID ieee
SourceType Publisher
StartPage 2063
SubjectTerms Accuracy
Brain-computer interfaces
Brain-machine interface (BMI)
Conditional random fields
Decision trees
Decoding
ECoG
finger movement classification
Fingers
machine learning
Machine learning algorithms
Minimally invasive surgery
Motors
Prosthetics
temporal dynamics
Title Enhanced Classification of Individual Finger Movements with ECoG
URI https://ieeexplore.ieee.org/document/9048649
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ60PenFR2t8Zw8ehcKyBfZm0hSrSasHm_TWLMtsNCbFKL34691ZEB_x4I2QEMgMzPDNzPcNwIWSo7zQiY1-0nBPcFSe4gX3bGBU9odCRgaJnDybx9OFuF2Olh24bLkwiOiGz9CnQ9fLL0q9oVLZUJI-nJBd6FrgVnO1WnBF2KERFQ0DOSSoNL6bZ9SupNJJKP3m6h9rVFwWyXZg9nn_enjk2d9Uua_ff0kz_vcBd2Hwxddj920m2oMOrvdh-5vUYB-uJutH1-xnbg0mDQg5n7DSsJuWlMUyV-Vjs9LJiFdvjOq0bDIurwewyCYP46nXbE_wnngQVV4RpNKCG5UXKYZpkifavjRap3FMIc3aiEeYpyYWiqPQsf2wlUDOTYKJ9SuG0QH01uUaD4HJlERkglxgEgtjuCpGaHEKKfUkRuriCPpki9VLLZCxasxw_PfpE9gif9SEvlPoVa8bPLOZvcrPnUs_AIsDo8E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ7UelAvPqrx7R48CqXLFtibSVNstVQPbdJbsyyz0ZiAUXrx17u7ID7iwRshIdnMwAzfzHzfAFwK3k8zGeroxxV1GEXhCJpRRwdGoX8ouK_QkJOTaTCas9tFf9GCq4YLg4h2-Axdc2l7-VkhV6ZU1uVGH47xNVjXeZ_xiq3VwCuDHmpZ0Z7HuwYsDe6nsWlYmuJJj7v18z8Wqdg8Em9D8nmCanzk2V2VqSvff4kz_veIO7D_xdgjD00u2oUW5nuw9U1ssAPXw_zRtvuJXYRpRoSsV0ihyLihZZHY1vlIUlgh8fKNmEotGQ6Km32Yx8PZYOTU-xOcJ-r5pZN5EdfwRqRZhL0oTEOpXxspoyAwQU3biPqYRipggiKTgf60BUNKVYih9iz2_ANo50WOh0B4ZGRkvJRhGDClqMj6qJGK0eoJFZfZEXSMLZYvlUTGsjbD8d-3L2BjNEsmy8l4encCm8Y3Fb3vFNrl6wrPdJ4v03Pr3g9U-KcR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+record+-+Asilomar+Conference+on+Signals%2C+Systems%2C+%26+Computers&rft.atitle=Enhanced+Classification+of+Individual+Finger+Movements+with+ECoG&rft.au=Yao%2C+Lin&rft.au=Shoaran%2C+Mahsa&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2576-2303&rft.spage=2063&rft.epage=2066&rft_id=info:doi/10.1109%2FIEEECONF44664.2019.9048649&rft.externalDocID=9048649