Enhanced Classification of Individual Finger Movements with ECoG
Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning al...
Saved in:
Published in | Conference record - Asilomar Conference on Signals, Systems, & Computers pp. 2063 - 2066 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-2303 |
DOI | 10.1109/IEEECONF44664.2019.9048649 |
Cover
Loading…
Abstract | Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients. |
---|---|
AbstractList | Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we propose to exploit the temporal dynamics of the multi-channel electrocorticography (ECoG) signal from human subjects and modern machine learning algorithms to improve the finger-level movement classification accuracy. Using a decision tree ensemble as the classifier and the temporally-concatenated features of ECoG as input, we achieved an average classification accuracy of 71.3%±7.1% on 3 subjects, 6.3% better than the state-of-the-art approach based on conditional random fields (CRF) on the same dataset. Our proposed method could enable a high-performance and minimally invasive cortical BMI for paralyzed patients. |
Author | Yao, Lin Shoaran, Mahsa |
Author_xml | – sequence: 1 givenname: Lin surname: Yao fullname: Yao, Lin organization: Cornell University,School of Electrical and Computer Engineering,Ithaca,NY,USA,14853 – sequence: 2 givenname: Mahsa surname: Shoaran fullname: Shoaran, Mahsa organization: Cornell University,School of Electrical and Computer Engineering,Ithaca,NY,USA,14853 |
BookMark | eNotz0FLwzAYgOEoCq7TX-AleG9NvmRpelNKOgvTXfQ80uSri3SpNHXiv1dwp_f2wpORizhGJOSOs4JzVt23xph6-9JIqZQsgPGqqJjUSlZnJOMlaC4FY_KcLGBVqhwEE1ckS-mDMWCgYUEeTNzb6NDTerAphT44O4cx0rGnbfThGPyXHWgT4jtO9Hk84gHjnOh3mPfU1OP6mlz2dkh4c-qSvDXmtX7KN9t1Wz9u8gBMzLlnulKwsp3XyHXZlQ6td04rZb3HPwsI7HSvpAWUTgkAKxGgL7Hs0CEXS3L7_w2IuPucwsFOP7uTVvwCU09NWg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IEEECONF44664.2019.9048649 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1728143004 9781728143002 |
EISSN | 2576-2303 |
EndPage | 2066 |
ExternalDocumentID | 9048649 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-d089625abd8e187b7ceadcc866adde10923eb8f64a2e4c6322a4e22f7e7bece13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 07:43:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-d089625abd8e187b7ceadcc866adde10923eb8f64a2e4c6322a4e22f7e7bece13 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9048649 |
PublicationCentury | 2000 |
PublicationDate | 2019-Nov. |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov. |
PublicationDecade | 2010 |
PublicationTitle | Conference record - Asilomar Conference on Signals, Systems, & Computers |
PublicationTitleAbbrev | IEEECONF |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020282 |
Score | 2.1742523 |
Snippet | Motor decoding at the level of individual finger movements is critical for high-performance brain-machine interface (BMI) applications. In this work, we... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2063 |
SubjectTerms | Accuracy Brain-computer interfaces Brain-machine interface (BMI) Conditional random fields Decision trees Decoding ECoG finger movement classification Fingers machine learning Machine learning algorithms Minimally invasive surgery Motors Prosthetics temporal dynamics |
Title | Enhanced Classification of Individual Finger Movements with ECoG |
URI | https://ieeexplore.ieee.org/document/9048649 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ60PenFR2t8Zw8ehcKyBfZm0hSrSasHm_TWLMtsNCbFKL34691ZEB_x4I2QEMgMzPDNzPcNwIWSo7zQiY1-0nBPcFSe4gX3bGBU9odCRgaJnDybx9OFuF2Olh24bLkwiOiGz9CnQ9fLL0q9oVLZUJI-nJBd6FrgVnO1WnBF2KERFQ0DOSSoNL6bZ9SupNJJKP3m6h9rVFwWyXZg9nn_enjk2d9Uua_ff0kz_vcBd2Hwxddj920m2oMOrvdh-5vUYB-uJutH1-xnbg0mDQg5n7DSsJuWlMUyV-Vjs9LJiFdvjOq0bDIurwewyCYP46nXbE_wnngQVV4RpNKCG5UXKYZpkifavjRap3FMIc3aiEeYpyYWiqPQsf2wlUDOTYKJ9SuG0QH01uUaD4HJlERkglxgEgtjuCpGaHEKKfUkRuriCPpki9VLLZCxasxw_PfpE9gif9SEvlPoVa8bPLOZvcrPnUs_AIsDo8E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ7UelAvPqrx7R48CqXLFtibSVNstVQPbdJbsyyz0ZiAUXrx17u7ID7iwRshIdnMwAzfzHzfAFwK3k8zGeroxxV1GEXhCJpRRwdGoX8ouK_QkJOTaTCas9tFf9GCq4YLg4h2-Axdc2l7-VkhV6ZU1uVGH47xNVjXeZ_xiq3VwCuDHmpZ0Z7HuwYsDe6nsWlYmuJJj7v18z8Wqdg8Em9D8nmCanzk2V2VqSvff4kz_veIO7D_xdgjD00u2oUW5nuw9U1ssAPXw_zRtvuJXYRpRoSsV0ihyLihZZHY1vlIUlgh8fKNmEotGQ6Km32Yx8PZYOTU-xOcJ-r5pZN5EdfwRqRZhL0oTEOpXxspoyAwQU3biPqYRipggiKTgf60BUNKVYih9iz2_ANo50WOh0B4ZGRkvJRhGDClqMj6qJGK0eoJFZfZEXSMLZYvlUTGsjbD8d-3L2BjNEsmy8l4encCm8Y3Fb3vFNrl6wrPdJ4v03Pr3g9U-KcR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+record+-+Asilomar+Conference+on+Signals%2C+Systems%2C+%26+Computers&rft.atitle=Enhanced+Classification+of+Individual+Finger+Movements+with+ECoG&rft.au=Yao%2C+Lin&rft.au=Shoaran%2C+Mahsa&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2576-2303&rft.spage=2063&rft.epage=2066&rft_id=info:doi/10.1109%2FIEEECONF44664.2019.9048649&rft.externalDocID=9048649 |