Mitigating the Bias of Heterogeneous Human Behavior in Affective Computing
Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in re...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in real-world settings makes it more difficult to mitigate the unfairness of the model outcomes. In this work, we focus on the heterogeneity of human behavioral signals and analyze its impact on model fairness. We design a novel method named multi-layer factor analysis to automatically identify the heterogeneity patterns in high-dimensional behavioral data and propose a framework to enhance fairness of behavioral modeling without accessing sensitive attributes. |
---|---|
AbstractList | Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in real-world settings makes it more difficult to mitigate the unfairness of the model outcomes. In this work, we focus on the heterogeneity of human behavioral signals and analyze its impact on model fairness. We design a novel method named multi-layer factor analysis to automatically identify the heterogeneity patterns in high-dimensional behavioral data and propose a framework to enhance fairness of behavioral modeling without accessing sensitive attributes. |
Author | Yan, Shen Narayanan, Shrikanth Lerman, Kristina Kao, Hsien-Te Ferrara, Emilio |
Author_xml | – sequence: 1 givenname: Shen surname: Yan fullname: Yan, Shen email: shenyan@isi.edu organization: University of Southern California,Information Sciences Institute – sequence: 2 givenname: Hsien-Te surname: Kao fullname: Kao, Hsien-Te email: hsiente@isi.edu organization: University of Southern California,Information Sciences Institute – sequence: 3 givenname: Kristina surname: Lerman fullname: Lerman, Kristina email: lerman@isi.edu organization: University of Southern California,Information Sciences Institute – sequence: 4 givenname: Shrikanth surname: Narayanan fullname: Narayanan, Shrikanth email: shri@isi.edu organization: University of Southern California,Information Sciences Institute – sequence: 5 givenname: Emilio surname: Ferrara fullname: Ferrara, Emilio email: ferrarae@isi.edu organization: University of Southern California,Information Sciences Institute |
BookMark | eNotj9FKwzAYhaMouM09gSB5gdYkbdLksivqKhNv9Hok2Z8uYpPRpgPf3g13dQ4HvgPfHN2EGAChR0pySol6qpu25UyyImeE0VxxVZWFukJzKgQvCaFKXKMZo1xkklJ6h5bj-E3OOydS8hl6e_fJdzr50OG0B7zyesTR4TUkGGIHAeI04vXU64BXsNdHHwfsA66dA5v8EXAT-8N05u_RrdM_IywvuUBfL8-fzTrbfLy2Tb3JPCNFyuwOXCFUxR3XEqy0Fk5NaCO01cYUghhHgDNh-A40KFNyVwFhFoQ15qS3QA__vx4AtofB93r43V7Uiz-sDlHV |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII52823.2021.9597439 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) (F) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1665400196 9781665400190 |
EISSN | 2156-8111 |
EndPage | 8 |
ExternalDocumentID | 9597439 |
Genre | orig-research |
GrantInformation_xml | – fundername: Office of the Director of National Intelligence funderid: 10.13039/100011038 – fundername: Intelligence Advanced Research Projects Activity funderid: 10.13039/100011039 |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i203t-cdef36975f5a8ec8ccef5a6ab6acabb360bf0e526b5deae9b45f7e02ce6cbb743 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:27:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-cdef36975f5a8ec8ccef5a6ab6acabb360bf0e526b5deae9b45f7e02ce6cbb743 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9597439 |
PublicationCentury | 2000 |
PublicationDate | 2021-Sept.-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 |
Score | 1.795312 |
Snippet | Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Affective computing Analytical models Bias Computational modeling Decision making Design methodology Employment Fairness Heterogeneity Performance evaluation |
Title | Mitigating the Bias of Heterogeneous Human Behavior in Affective Computing |
URI | https://ieeexplore.ieee.org/document/9597439 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTkwFWsQtD4wkdQ478VgqqrZSEQOVulW284wipAS1ycKvx3bSViAGNivyFR95R773PoQeGBAlY3vTFI-9WOvY45EMvEAKMLZ2oIjjOly-sNkqXqzpuoMeD7EwAODAZ-DbovuXn5Wqtq6yEbfab8S7qGsMtyZW6-hPcXSmtA0CDggfjSfzOTUWReTbQf228Q8WFSdEpn203A_fYEc-_LqSvvr6lZnxv_M7RcNjuB5-PQiiM9SB4hz193wNuL2-A7RY5k1GjeIdG70PP-Vih0uNZxYSU5qTBGW9w86tj9u8iVucF3jsMB_ms4ibPk37IVpNn98mM6_lUvDykESVpzLQEeMJ1VSkoFKlwJSYkEwoIWXEiNQEaMgkzUAAlzHVCZBQAVNSmre6QL2iLOAS4YQblUKHJJWBNqKNCB1nxmphKjRVBQuv0MAuzeazSZexaVfl-u_HN-jEbo-FYITpLepV2xrujJyv5L3b4G8nWal5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8ehZUf7eA4Fxc2x-JhS3Zb2vJqiAmYDS7-9bbAXDQevDWEQmkp33uP770PoQcGRArf7DQZ-pavlG-FnnAsR3DQvrYjSaV1GM9ZtPSnK7pqocfvXBgAqMhnYJtm9S8_yWVpQmX90Fi_XniADjXuU6fO1tpHVCpBU9qkATsk7A9HkwnVPoVnm9vaTfcfOioVjIw7KN4NoGaPvNtlIWz5-as2439HeIJ6-4Q9_PoNRaeoBdkZ6uwUG3CzgbtoGqd1TY3sDWvLDz-lfItzhSNDisn1uwR5ucVVYB83lRM3OM3wsGJ96A8jrq-p-_fQcvy8GEVWo6ZgpS7xCksmoDwWDqiiPAAZSAm6xbhgXHIhPEaEIkBdJmgCHELhUzUA4kpgUgj9VOeoneUZXCA8CLVRoVwSCEdpcCNc-Yn2W5h09amcuZeoa6Zm_VEXzFg3s3L19-F7dBQt4tl6Npm_XKNjs1SGkOEGN6hdbEq41ahfiLtqsb8ALHeswg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Mitigating+the+Bias+of+Heterogeneous+Human+Behavior+in+Affective+Computing&rft.au=Yan%2C+Shen&rft.au=Kao%2C+Hsien-Te&rft.au=Lerman%2C+Kristina&rft.au=Narayanan%2C+Shrikanth&rft.date=2021-09-28&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACII52823.2021.9597439&rft.externalDocID=9597439 |