Mitigating the Bias of Heterogeneous Human Behavior in Affective Computing

Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in re...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 1 - 8
Main Authors Yan, Shen, Kao, Hsien-Te, Lerman, Kristina, Narayanan, Shrikanth, Ferrara, Emilio
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in real-world settings makes it more difficult to mitigate the unfairness of the model outcomes. In this work, we focus on the heterogeneity of human behavioral signals and analyze its impact on model fairness. We design a novel method named multi-layer factor analysis to automatically identify the heterogeneity patterns in high-dimensional behavioral data and propose a framework to enhance fairness of behavioral modeling without accessing sensitive attributes.
AbstractList Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human behavioral data poses challenges for both model validity and fairness. The limited access to sensitive attributes (e,g., race, gender) in real-world settings makes it more difficult to mitigate the unfairness of the model outcomes. In this work, we focus on the heterogeneity of human behavioral signals and analyze its impact on model fairness. We design a novel method named multi-layer factor analysis to automatically identify the heterogeneity patterns in high-dimensional behavioral data and propose a framework to enhance fairness of behavioral modeling without accessing sensitive attributes.
Author Yan, Shen
Narayanan, Shrikanth
Lerman, Kristina
Kao, Hsien-Te
Ferrara, Emilio
Author_xml – sequence: 1
  givenname: Shen
  surname: Yan
  fullname: Yan, Shen
  email: shenyan@isi.edu
  organization: University of Southern California,Information Sciences Institute
– sequence: 2
  givenname: Hsien-Te
  surname: Kao
  fullname: Kao, Hsien-Te
  email: hsiente@isi.edu
  organization: University of Southern California,Information Sciences Institute
– sequence: 3
  givenname: Kristina
  surname: Lerman
  fullname: Lerman, Kristina
  email: lerman@isi.edu
  organization: University of Southern California,Information Sciences Institute
– sequence: 4
  givenname: Shrikanth
  surname: Narayanan
  fullname: Narayanan, Shrikanth
  email: shri@isi.edu
  organization: University of Southern California,Information Sciences Institute
– sequence: 5
  givenname: Emilio
  surname: Ferrara
  fullname: Ferrara, Emilio
  email: ferrarae@isi.edu
  organization: University of Southern California,Information Sciences Institute
BookMark eNotj9FKwzAYhaMouM09gSB5gdYkbdLksivqKhNv9Hok2Z8uYpPRpgPf3g13dQ4HvgPfHN2EGAChR0pySol6qpu25UyyImeE0VxxVZWFukJzKgQvCaFKXKMZo1xkklJ6h5bj-E3OOydS8hl6e_fJdzr50OG0B7zyesTR4TUkGGIHAeI04vXU64BXsNdHHwfsA66dA5v8EXAT-8N05u_RrdM_IywvuUBfL8-fzTrbfLy2Tb3JPCNFyuwOXCFUxR3XEqy0Fk5NaCO01cYUghhHgDNh-A40KFNyVwFhFoQ15qS3QA__vx4AtofB93r43V7Uiz-sDlHV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII52823.2021.9597439
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) (F)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665400196
9781665400190
EISSN 2156-8111
EndPage 8
ExternalDocumentID 9597439
Genre orig-research
GrantInformation_xml – fundername: Office of the Director of National Intelligence
  funderid: 10.13039/100011038
– fundername: Intelligence Advanced Research Projects Activity
  funderid: 10.13039/100011039
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-cdef36975f5a8ec8ccef5a6ab6acabb360bf0e526b5deae9b45f7e02ce6cbb743
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:03 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-cdef36975f5a8ec8ccef5a6ab6acabb360bf0e526b5deae9b45f7e02ce6cbb743
PageCount 8
ParticipantIDs ieee_primary_9597439
PublicationCentury 2000
PublicationDate 2021-Sept.-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-28
  day: 28
PublicationDecade 2020
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.795312
Snippet Affective computing is broadly applied to decision making systems ranging from mental health assessment to employability evaluation. The heterogeneity of human...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Affective computing
Analytical models
Bias
Computational modeling
Decision making
Design methodology
Employment
Fairness
Heterogeneity
Performance evaluation
Title Mitigating the Bias of Heterogeneous Human Behavior in Affective Computing
URI https://ieeexplore.ieee.org/document/9597439
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTkwFWsQtD4wkdQ478VgqqrZSEQOVulW284wipAS1ycKvx3bSViAGNivyFR95R773PoQeGBAlY3vTFI-9WOvY45EMvEAKMLZ2oIjjOly-sNkqXqzpuoMeD7EwAODAZ-DbovuXn5Wqtq6yEbfab8S7qGsMtyZW6-hPcXSmtA0CDggfjSfzOTUWReTbQf228Q8WFSdEpn203A_fYEc-_LqSvvr6lZnxv_M7RcNjuB5-PQiiM9SB4hz193wNuL2-A7RY5k1GjeIdG70PP-Vih0uNZxYSU5qTBGW9w86tj9u8iVucF3jsMB_ms4ibPk37IVpNn98mM6_lUvDykESVpzLQEeMJ1VSkoFKlwJSYkEwoIWXEiNQEaMgkzUAAlzHVCZBQAVNSmre6QL2iLOAS4YQblUKHJJWBNqKNCB1nxmphKjRVBQuv0MAuzeazSZexaVfl-u_HN-jEbo-FYITpLepV2xrujJyv5L3b4G8nWal5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8ehZUf7eA4Fxc2x-JhS3Zb2vJqiAmYDS7-9bbAXDQevDWEQmkp33uP770PoQcGRArf7DQZ-pavlG-FnnAsR3DQvrYjSaV1GM9ZtPSnK7pqocfvXBgAqMhnYJtm9S8_yWVpQmX90Fi_XniADjXuU6fO1tpHVCpBU9qkATsk7A9HkwnVPoVnm9vaTfcfOioVjIw7KN4NoGaPvNtlIWz5-as2439HeIJ6-4Q9_PoNRaeoBdkZ6uwUG3CzgbtoGqd1TY3sDWvLDz-lfItzhSNDisn1uwR5ucVVYB83lRM3OM3wsGJ96A8jrq-p-_fQcvy8GEVWo6ZgpS7xCksmoDwWDqiiPAAZSAm6xbhgXHIhPEaEIkBdJmgCHELhUzUA4kpgUgj9VOeoneUZXCA8CLVRoVwSCEdpcCNc-Yn2W5h09amcuZeoa6Zm_VEXzFg3s3L19-F7dBQt4tl6Npm_XKNjs1SGkOEGN6hdbEq41ahfiLtqsb8ALHeswg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Mitigating+the+Bias+of+Heterogeneous+Human+Behavior+in+Affective+Computing&rft.au=Yan%2C+Shen&rft.au=Kao%2C+Hsien-Te&rft.au=Lerman%2C+Kristina&rft.au=Narayanan%2C+Shrikanth&rft.date=2021-09-28&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACII52823.2021.9597439&rft.externalDocID=9597439