HOTR: End-to-End Human-Object Interaction Detection with Transformers
Human-Object Interaction (HOI) detection is a task of identifying "a set of interactions" in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interaction labels. Most existing methods hav...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 74 - 83 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human-Object Interaction (HOI) detection is a task of identifying "a set of interactions" in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interaction labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred by HOTR, which directly predicts a set of 〈human, object, interaction〉 triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection. |
---|---|
AbstractList | Human-Object Interaction (HOI) detection is a task of identifying "a set of interactions" in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interaction labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred by HOTR, which directly predicts a set of 〈human, object, interaction〉 triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection. |
Author | Lee, Junhyun Kim, Eun-Sol Kim, Hyunwoo J. Kim, Bumsoo Kang, Jaewoo |
Author_xml | – sequence: 1 givenname: Bumsoo surname: Kim fullname: Kim, Bumsoo email: bumsoo.brain@kakaobrain.com organization: Kakao Brain – sequence: 2 givenname: Junhyun surname: Lee fullname: Lee, Junhyun email: ljhyun33@korea.ac.kr organization: Korea University – sequence: 3 givenname: Jaewoo surname: Kang fullname: Kang, Jaewoo email: kangj@korea.ac.kr organization: Korea University – sequence: 4 givenname: Eun-Sol surname: Kim fullname: Kim, Eun-Sol email: eunsol.kim@kakaobrain.com organization: Kakao Brain – sequence: 5 givenname: Hyunwoo J. surname: Kim fullname: Kim, Hyunwoo J. email: hyunwoojkim@korea.ac.kr organization: Korea University |
BookMark | eNotjNFKwzAYRqMouM09gV70BVL_P0nTxDup1Q4GlVG9HUmbYodNJY2Ib-9kXp3vwMdZkgs_eUfILUKKCPqueHvZCSl4njJgmAIAijOyRCkzITLQ7JwsECSnUqO-Iut5Phw_nCFKrRakrOpmd5-UvqNxokck1ddoPK3twbUx2fjogmnjMPnk0UV3Wt9DfE-aYPzcT2F0Yb4ml735mN36nyvy-lQ2RUW39fOmeNjSgQGPtM3BtIaLTgnWa4vMtn-ipULgzhiZ5RZs57IMDFO9MBqURqUEWAsgO74iN6fu4Jzbf4ZhNOFnr7NcQS75L1tdTI4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR46437.2021.00014 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665445092 9781665445092 |
EISSN | 1063-6919 |
EndPage | 83 |
ExternalDocumentID | 9578076 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation funderid: 10.13039/501100001321 |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-c70aca34d842f9b12bc34d8968103eaa657b0bde550a28f4a908918840bb006d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:24:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-c70aca34d842f9b12bc34d8968103eaa657b0bde550a28f4a908918840bb006d3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9578076 |
PublicationCentury | 2000 |
PublicationDate | 2021-June |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.6212382 |
Snippet | Human-Object Interaction (HOI) detection is a task of identifying "a set of interactions" in an image, which involves the i) localization of the subject (i.e.,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 74 |
SubjectTerms | Benchmark testing Detectors Prediction algorithms Predictive models Semantics Training Transformers |
Title | HOTR: End-to-End Human-Object Interaction Detection with Transformers |
URI | https://ieeexplore.ieee.org/document/9578076 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO3mauonf5ODRdGubNo3XuTEE3Rib7Dby8QoidKLtxb_eJO0migdPTQsl4SWP936_9xGAG2cEYp0oaniuKeNGWZ2TguqE5UZE7lj5LN-ndLpiD-tk3YLbfS0MIvrkMwzc0MfyzVZXjiobCHu8LO5uQ9sCt7pWa8-nxBbJpCJrquPCoRiMnucL5uJSFgVGYeDRwI87VLwJmXThcTd5nTnyGlSlCvTnr76M_13dIfS_i_XIfG-GjqCFxTF0G--SNLr70YPxdLZc3JFxYWi5pfZBPIFPZ8pRMcRTg3WVA7nHEuuRo2nJcufcWlexD6vJeDma0uYSBfpiJV1SzYdSy5iZjEW5UGGktHsRrg9ZjFKmCVdDZdAiFRllOZMuEBhmFvcpp5EmPoFOsS3wFAjPjBAcU8xCZFIJZ9gMCuQpt78adgY9J5XNW90nY9MI5Pzvzxdw4PalTru6hE75XuGVNfCluvY7-wWd76R2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbZM4ccxaWgXoS1WKulV-XCSElCJIF349tpMWgRiY4kSKEp19-u777s5G6MaCQKBCSTTLFKFMS-NzghMV0kxz3y4rV-U7jpI5fVyEixq63fbCAIArPoO2Hbpcvl6ptZXKOtwsL8O7d9Cuwf3QL7u1topKYLhMxOOqP87r8k7veTqjNjNleKDvtR0f-HGKigORQQONNp8va0de2-tCttXnr50Z__t_B6j13a6Hp1sgOkQ1yI9Qo4ovceW9H03UTybp7A73c02KFTEX7CR8MpFWjMFOHCz7HPA9FFCOrFCL0014a4LFFpoP-mkvIdUxCuTF2LoginWFEgHVMfUzLj1fKnvD7U5kAQgRhUx2pQbDVYQfZ1TYVKAXG-YnrU_q4BjV81UOJwizWHPOIILYAyokt9CmgQOLmHlV01PUtFZZvpU7ZSwrg5z9_fga7SXpaLgcPoyfztG-naOyCOsC1Yv3NVwauC_klZvlL2cTp8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HOTR%3A+End-to-End+Human-Object+Interaction+Detection+with+Transformers&rft.au=Kim%2C+Bumsoo&rft.au=Lee%2C+Junhyun&rft.au=Kang%2C+Jaewoo&rft.au=Kim%2C+Eun-Sol&rft.date=2021-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=74&rft.epage=83&rft_id=info:doi/10.1109%2FCVPR46437.2021.00014&rft.externalDocID=9578076 |